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Abstract

A general framework is proposed for the formulation of microplane models at large strain. It is based on the
thermodynamic approach to microplane formulation recently presented by the authors, which defines the macroscopic
free energy of the material as an integral of a microplane free-energy potential over all possible orientations. By simple
differentiation with respect to strain, it is possible to obtain the consistent definition of microplane stresses and integral
expressions for evaluation of the macroscopic stress tensor. To apply this approach to large strains, new microplane
strain measures need to be defined, including volume change, stretch of fibers, “thickening’ of planes, deviatoric parts
of the stretch and thickening, and distortion (shear) angles. Based on these, various microplane formulations are de-
veloped. Each formulation starts with the definition of microplane stresses and the derivation of the integral expressions
which are valid for the general case of dissipative materials. Then, these expressions are particularized to specific forms
of hyperelastic potentials leading to various hyperelastic models. The simplest model, with a quadratic microplane
potential in terms of the fiber stretch, corresponds to the classical Gaussian statistical theory of long-chain molecules
and leads to the neo-Hookean type of macroscopic free-energy potential. Many other, more complex forms of the
microplane potential are investigated and their relation to existing models for rubber elasticity is analyzed. It is shown
that, in the small-strain limit, they collapse into well-known small-strain microplane formulations, either with restricted
or with unrestricted values of Poisson’s ratio.
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1. Introduction

Since the first microplane formulations were developed in the 1980s (Bazant, 1984; Bazant and Gam-
barova, 1984; Bazant and Oh, 1985), this approach has proven to be a powerful tool for constitutive
modeling. The basic idea, namely that the constitutive material behavior as a relation between stress and
strain tensors can be “assembled” from the behavior of planes with different orientations within the ma-
terial such as slip planes, microcracks, particle contacts, etc., dates back to the failure envelopes of Mohr
(1900) and the “slip theory of plasticity” of Taylor (1938) and Batdorf and Budiansky (1949). Related ideas
are also the basis of some modern multi-surface plasticity models, for instance those that represent multiple
cracking (Carol and Prat, 1995).

However, the slip theory of plasticity and its extensions are based on the static constraint, that is, on the
assumption that the stress traction on each of those planes is equal to the projection to the macroscopic
stress tensor. One of the distinctive assumptions of the microplane model is the kinematic constraint, ac-
cording to which normal and tangential (shear) strains on each plane are assumed to be equal to the
corresponding projections of the strain tensor. This alternative assumption is much better suited for quasi-
brittle and softening behavior of materials such as concrete or rock, to which most of the microplane
models proposed in recent years have been devoted (Bazant, 1984; Bazant and Gambarova, 1984; Bazant
and Oh, 1985; Bazant and Prat, 1988a,b; Carol et al., 1992; Bazant et al., 1996a,b, 2000b; Caner and
Bazant, 2000; Ozbolt et al., 2001). Perhaps the main advantage of microplane models over more classical
tensor-based plasticity or damage formulations is the implicit representation of load-induced anisotropic
behavior, which is naturally included since each plane in the system is subject to a different load history and
may exhibit a different strain, stiffness, etc. For many materials this representation is close to physical
reality and results into very good fits of experimental data under a variety of situations (Bazant and Prat,
1988b; Bazant et al., 1996a,b, 2000b). The microplane models proposed so far have been mostly in the
small-strain regime, except for specific extensions of small-strain concrete models to include behavior under
high confinement (for instance under impact situations), which have been constructed intuitively and
without a solid theoretical framework (Bazant et al., 1996a,b, 2000a).

A requirement for the development of general formulations at large strain is full thermodynamic
consistency, and the first goal should be to reproduce the well-known hyperelastic behavior. In micro-
plane formulations, the kinematic micro-macro constraint and the fundamental constitutive laws at the
plane level imply the need to find a static relation between stresses on each microplane and the
macroscopic stress tensor. Since it is in general not possible to satisfy the “double constraint” (i.e., the
kinematic constraint and the static constraint at the same time), these relations must be of a weak
nature and are written in an integral form. In classical microplane formulations these relations were
developed by application of the Principle of Virtual Work (PVW) linking the microplane and macroscopic
(tensor) levels, which necessarily requires a dose of intuition (definition of microplane stress compo-
nents, conjugate pairs, etc.). This was the procedure adopted by the majority of microplane models for
concrete (Bazant and Gambarova, 1984; Bazant and Prat, 1988a; Carol et al., 1992; Bazant et al.,
1996a,b), which exhibit excellent data fitting capabilities, but thermodynamic consistency cannot be
guaranteed in all situations, and spurious energy generation or dissipation cannot be avoided under
certain loading paths.

These deficiencies have been detected recently, when the thermodynamic basis for microplane formu-
lations was established by the authors (Carol et al., 2001). The main idea is that a free-energy potential is
introduced for each microplane, and its integral over all possible orientations leads to the standard
macroscopic free energy. This concept, combined with the kinematic constraint, provides a thermo-
dynamically consistent procedure to define conjugate microplane stresses, and to develop the correct in-
tegral static relations needed. The procedure has already been exploited to establish a first series of
plasticity and damage models in small strain (Kuhl et al., 2001; Kuhl and Ramm, 2000).
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The thermodynamic approach for microplane models also opens the door to the consistent and rational
development of large-strain microplane formulations, which is the main purpose of this paper. The
structure of the paper is as follows: The thermodynamic approach to microplane formulations is briefly
reviewed in Section 2, and in Section 3 it is applied to small strains, considering all the microplane strain
variables normally used, and systematically developing the corresponding integral stress-evaluation for-
mulae and the relations between microplane elastic constants and their macroscopic counterparts.

In Section 4, the general approach for large-strain microplane formulations is described, including all
fundamental kinematics at the macroscopic and microplane levels. In particular, all microplane strain
measures that are potential candidates to be included as arguments of the microplane free-energy function
are defined, and some useful relations are derived.

The first incursion into specific large-strain formulations is given in Section 5, with the simplest for-
mulation based on the stretch of a generic fiber within the material. This formulation, which is also de-
veloped via the principle of virtual work for comparison, encompasses the Gaussian theory of long-chain
molecules developed half a century ago for rubber materials. With a simple quadratic potential, this model
turns out to be equivalent to the incompressible neo-Hookean material. In spite of its instructive value,
however, the model exhibits some questionable features such as non-zero microplane stress in the unde-
formed state. These limitations are overcome with the improved formulations of Section 6, also based on
fiber stretch only, but using more complex microplane energy functions. However, in the small-strain re-
gime these formulations are still limited to a fixed Poisson ratio of 1/4.

More elaborate formulations involving additional microplane strains are presented in Sections 7-9.
These are developed for general dissipative behavior, and then are particularized for specific forms of
hyperelastic microplane potential. In this way, they turn out equivalent to progressively more general forms
of neo-Hookean (Section 7) and Mooney-Rivlin (Sections 8 and 9) material, and in the small-strain regime
they collapse into well-known microplane formulations with partially restricted (Section 8) and unrestricted
(Sections 7 and 9) Poisson ratios.

Finally, in Section 10 the main developments and the new possibilities open by the paper, are summarized.

Notation. In this paper we use a compact tensorial notation. Tensors are denoted by bold face letters and,
whenever possible, upper-case letters are used for Lagrangian quantities (referred to the initial, undeformed
configuration) while lower-case letters are used for Eulerian quantities (referred to the current, deformed
configuration). Simple contraction of two tensors is denoted by a dot *“-”’, double contraction by a colon
“:”, and a direct (outer) product by the symbol ®. Superscript ( )' denotes transposition, and |u] is the norm
of a vector (first-order tensor) u, defined as |u| = v/u - u. It is convenient to introduce the second-order unit
tensor I with components ¢,; (Kronecker delta), the fourth-order symmetric unit tensor .#*™ with com-
ponents I;f}‘ =1(040; + 040y), the fourth-order volumetric projection tensor .# vol — H®I, and the
fourth-order deviatoric projection tensor .#%" = .#%™ — ¢*°! The square brackets “[---]”” enclose the
arguments of a function.

2. Thermodynamic approach to microplane formulations

The thermodynamic approach to microplane-based constitutive modeling has been introduced in Carol
et al. (1998) and formalized in Carol et al. (2001). It has already been used as the basis for some prototype
models in Kuhl et al. (2001) and Kuhl and Ramm (2000). The fundamental ideas of this approach are
summarized in this section.

The first, standard assumption is the existence of a “macroscopic” potential ¥[e, £], representing the free
energy density per unit mass under isothermal conditions, which depends on some tensor characterizing
strain, & and on a given set of internal variables, £. Multiplying ¥ by the mass density in the initial (un-
deformed) configuration, p,, gives the free energy per unit initial volume.
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An additional assumption, specific to microplane formulations, is that the macroscopic free energy per
unit initial volume can be obtained by collecting the contributions of elementary units called the micro-
planes, which all reside in the same macroscopic material point but have different spatial orientations. Each
microplane is characterized by its unit normal N in the initial configuration. The physical entity represented
by the microplane could be a plane of weakness normal to N, a fiber parallel to N, or a more complex,
oriented microstructural unit. The end points of unit vectors corresponding to all the microplane orien-
tations fill the unit sphere, but since microplanes with normals N and —IN are physically identical, it is
sufficient to consider the unit hemisphere, which is denoted as Q. According to the foregoing assumption,
the free energy per unit initial volume can be written as

3

po¥ = — / Pole™N, E,N]dQ (1)
21 Jo

Here, 3/2n is a scaling factor that will later simplify certain expressions, ¥o[e™, & N] is the microplane free

energy with units of energy per unit volume and unit solid angle, and

N = 7 [e,N] (2)

is a suitable microplane strain measure, which is assumed to be uniquely defined by the macroscopic strain
tensor ¢ and the microplane normal N. Eq. (2) is the general form of the kinematic constraint, characteristic
of microplane models. If the material is initially isotropic, all the microplanes have the same properties and
the microplane free energy ¥, does not depend on N explicitly but only through ¢™. In that case, the
argument N can be dropped from the integrand in (1).

Following the standard Coleman method (Coleman and Gurtin, 1967), stress is obtained as the deriv-
ative of the volumetric free energy with respect to strain. Differentiating (1) and applying the chain rule, one
obtains

Ap?) 3 0¥, 0e™ 3 o~ 0eN
= = — —_— . ———— = — Q
? O 21 Jo 0e™ * 2 2n /Qa * e d (3)
where
oY
N) — Q
© 0™ 4)

can be identified as the microplane stress measure work-conjugate to the microplane strain measure ¢V, the
term 0e™) /0¢ is obtained by differentiating the kinematic constraint (2), and the symbol e stands for a
general scalar product, because the microplane strain measure ¢™ can be a scalar, vector, or a set of scalars
and vectors.

Note that the foregoing expressions are valid for general dissipative materials. In the particular case of
hyperelasticity, as later considered in the paper, the internal variables £ may be omitted from the free energy
arguments. However, when integral expressions are derived in this and subsequent sections, internal
variables are always retained for the sake of generality of such expressions.

3. Framework for small-strain microplane theory
3.1. Stress evaluation formulae
Practically all the microplane formulations developed in the 1980s and 1990s were limited to small strain.

The simplest model, proposed by Bazant and Oh (1985) and nowadays called M1, characterized the strain
on the microplane level by the strain component normal to the microplane, defined as
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en=n-¢-n=MnQEn):e=M":¢ (5)

where 4" = n® n is a second-order tensor that helps to simplify the notation. In this case, the microplane
strain measure &™) is represented by a single scalar, ey. Subsequent refinements enriched ¢é™ by the mi-
croplane shear strain, ¢r, and divided the normal strain ¢y into the volumetric strain, ¢y, which is the same
for all the microplanes, and the deviatoric strain, ¢p, which can also be understood as the normal projection
of the deviatoric part of the strain tensor. These strain measures can be evaluated as

er=n-e—nen=7 :¢ (6)

ev=1l:e=7":¢ (7)

tp=en—tv=m@n-):e= (N =) e=D :¢ (8)
where

T =n-I"" —n@nen, ¥ =1, Z=nen-il 9)

—1

3
are auxiliary tensors introduced for convenience. Note that &t is a first-order tensor while ¢y, ¢y and ¢p are
scalars, and that .7 is a third-order tensor while A", ¥~ and & are second-order tensors.

A quite general framework for small-strain microplane models is obtained if all of the foregoing mi-
croplane strain measures are considered as arguments of the free energy Yo[en, é1, év, €, €]. This is always
possible because nothing prevents us from using arguments of a function which are not independent,
provided that all the existing dependencies are taken into account while taking the derivatives such as those
implied in (3). In this case, the derivatives of the microplane strains with respect to the strain tensor follow
from (5)—(8): Oen/0e = A", Oer/0e = 7, etc. The specific stress evaluation formula obtained from (3)
therefore reads

3
o =5 [(oxN +or-T + vt +0pP)d0 (10)
Q
where
0P, Y, 0¥, _ 0% (11)
oN — aSN ) oT = aST 3 oy = as\/ ) op = aSD

are the microplane stresses work-conjugate with ey, &, ev and ¢p, respectively. Egs. (11) are the so-called
microplane constitutive laws.

By keeping only certain selected terms, (10) can be particularized to various microplane formulations
from the literature. For instance, model M1 (Bazant and Oh, 1985) considered the normal strain ey as the
only microplane strain measure, and the corresponding stress evaluation formula

3 3
= Q=_ Q 12
c ZR/QO'NJVd 2n/QO'Nn®nd ( )

was derived from the principle of virtual work. Clearly, (12) is a special case of (10).

One of the early microplane models, nowadays called model M1° (Bazant, 1984), was based on mi-
croplane strain measures &y and et and the corresponding microplane stresses oy and or. Since gt is always
perpendicular to n, o1 has the same property. It is convenient to write ¢t = ot where o = |o1| is the
magnitude of the shear microplane stress and t = a1 /|o7/| is its direction. Using the relations t - n = 0 and
t-(n- ") = (ten): IS =1 (t®n+n@t), it is possible to show that the stress evaluation formula for
model M1° reads
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3 . 3 1
J_%/Q(GNJVJroT-ﬂ')dQ—E/Q<6Nn®n+aT§(n®t+t®n)>dQ (13)

In model M2 (Bazant and Prat, 1988a,b), the normal strain was divided into the volumetric and devi-
atoric parts, and the stress was evaluated simply by substituting o = av + op into (13). However, this does
not correspond to the stress evaluation formula derived consistently from the free-energy potential as a
special case of (10), which reads

a:i (ov? 4+ op% + 61 -T)dQ

21 Jo
_3 o £+a n®n—I +o 1(n®t+t®n) dQ (14)
T Jo\UV3 TP 3 2

The differences have been analyzed and interpreted in Carol et al. (2001). Both formulae give the same
results in the case of isotropic linear elasticity (which explains why this discrepancy was not detected
earlier), but they differ significantly for non-linear behavior, especially if the microplane constitutive law for
the deviatoric microplane stress op strongly depends on the sign of the deviatoric microplane strain ep
(different behaviors in tension and compression). The original formula of model M2 may lead to spurious
energy dissipation or generation under certain load cycles, as demonstrated by an example in Carol et al.
(2001). The most recent implementation of the microplane model for concrete, called M4 (Bazant et al.,
2000b; Caner and Bazant, 2000), uses the consistent stress evaluation formula that follows from (10) by
dropping the term with ay. Nevertheless, model M4 does not fully fit into the present framework because
the microplane constitutive laws that link the strains &r, ¢y and &p to the stresses o1, oy and op are quite
complicated and can hardly be presented in the form of (11).

3.2. Linear elasticity

The special case of linear elasticity is obtained with a quadratic potential
Yolen, &r, év, ép) = H(Eney + Erer - &r + Evey + Epéep) (15)
which yields linear microplane constitutive laws
on = Enén, o1 = Etér, ov=Evey, op = Epép (16)

Substituting (16) and (5)—(8) into (10) provides the macroscopic stress—strain law ¢ = & : ¢ where
3
32%/(ENJV®A/+ET3"-3'+EV"V®"V+ED@®@)dQ (17)
Q

is the elastic stiffness tensor.

In general, the microplane elastic moduli £y, Et, Ev and Ep can depend on the microplane orientation n,
which provides a very natural framework for anisotropic elasticity. In the isotropic case, the microplane
moduli are constant and the integral in (17) can be evaluated in closed form. Using the formulae from
Bazant and Oh (1985) and Lubarda and Krajcinovic (1993), it is easy to show that

3
— [ #/dQ =1 18
271:/9 ( )

3 2
— [ N oANdQ =g 2 gl 19
2n /Q ® +3 (19)



L Carol et al. | International Journal of Solids and Structures 41 (2004) 511-557 517

3 3

> QF‘-Q‘szgfdeV (20)

3 vol

o Q“V@“i/dQ:J 1)
2

%/Q@@@dgzgfm (22)

Substituting (19)—(22) into (17) yields the macroscopic stiffness tensor in the form
& = (Ex + Ey) 9" + Y 2Ex + 3By + 2Ep) 5 (23)

Comparing this with the standard expression in terms of the bulk modulus K and shear modulus G, we
obtain

3K = Ex + Ey, 10G = 2Ex + 3Er + 2Ep (24)

Since there are only two independent macroscopic elastic moduli, it should be possible to reproduce linear
isotropic elasticity using only two non-zero microscopic elastic moduli. However, one must be careful to
make the right choice, otherwise it is impossible to cover the full range of thermodynamically admissible
macroscopic parameters with non-negative values of the microscopic moduli. This becomes clear from the
expression for the Poisson ratio,

v_3K72G_ 5Ey + 3EN — 2Ep — 3Er
6K +2G 10Ey + 12E\ + 2Ep + 3FEr

For a model with a single microplane strain, the value of Poisson’s ratio cannot be controled. A model
with ey only, would give v = 0.5, which corresponds to a fluid that transmits only hydrostatic pressure but
no deviatoric stress. Model M1 uses ¢y only, and the resulting Poisson ratio is v = 0.25, which is known to
be the value characteristic of a homogenized random lattice in three dimensions (spatial truss). Hypo-
thetical models using only ¢p or &r or both, but no other microplane strain measures, would give v = —1;
they represent a strange material in which the mean hydrostatic pressure always remains zero but a purely
deviatoric stress can be transmitted.

For a model with two or more microplane strain components, the value of Poisson’s ratio can be
controled, but only within the range bounded by the values that correspond to the special cases with a
single microplane strain component. So the model M1° with &y and &r can cover only the range
—1<v<0.25, and a hypothetical model with ¢y and &y could cover only the range 0.25 < v <0.5. The full
range —1 <v< 0.5 can be covered only by models that work with &y and with at least one of ep or &r. This
condition is satisfied by models M2 and M4 (Bazant and Prat, 1988a; Bazant et al., 2000D).

(25)

4. General framework for large-strain microplane theory
4.1. General stress evaluation formula

One major advantage of the thermodynamic approach to microplane-based constitutive modeling is that
the structure of Eqs. (1)—(4) is general (not restricted to small strain), and therefore the previous formu-
lation of Section 3 can be naturally extended to large deformation without the need for any major addi-
tional assumptions.

On the macroscopic level, the deformation must be characterized by some large-strain tensor, and dif-
ferentiation of the free energy gives its corresponding conjugate stress tensor. In this study, the Green’s
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Lagrangian (GL) strain tensor E and its conjugate second Piola—Kirchhoff (sPK) stress tensor X are chosen
for this purpose. The GL and other Lagrangian (or material) strain tensors are constructed in the usual
way: if x[X] is the function that maps the initial coordinate X onto the current coordinate x of the same
material particle, then the deformation gradient F, the rotation R, the stretch U, the right Cauchy—Green
(rCG) tensor C and the GL strain tensor E are defined as

ox

1
—_ — = . — t . = 2 = — —
F = 5X R-U C=F F=U", E 2(C I (26)
We recall also the polar decomposition
F=R-U=V.R (27)

where the rotation tensor R is orthogonal and the right stretch tensor U and left stretch tensor V are
symmetric and positive definite. Tensor U is the tensorial square root of the rCG tensor, because

C=F.-F=R-U)' R-U=U-R-R-U=U" (28)
while tensor V=R - U -R' is the tensorial square root of the left Cauchy—Green tensor b, defined as
b=F-F=V'=R-C-R (29)

The inverse of b is also known as the Finger tensor, b™".

The choice of the GL tensor as the basic strain tensor for the microplane formulation is of course only
one of many possible alternatives, but it seems the most advantageous, for two reasons. First, if induced
anisotropy is to be captured, it is necessary to use a strain measure defined with respect to the initial
configuration. Second, among all possible Lagrangian strain tensors, the GL tensor (or the linearly related
rCG tensor) leads to the simplest expressions for the microplane strain measures with a direct physical
meaning, which are proposed in the next section. At the same time, its conjugate sPK stress tensor is also
convenient because of its direct push-forward relation with the Cauchy stress tensor &, which facilitates the
physical interpretation of the resulting equations.

The next step will be to select and define the microplane strains. This is an essential aspect for which
there are several options with various degrees of generality and complexity, as described in Section 4.2 and
in the following sections of the paper. But before doing that, a general stress evaluation formula along the
line of (3) can be written for the large-strain microplane formulations based on the GL strain tensor:

w_0p¥) _3 [Wo ., 3 [ W .aE_<N> o3 E(N).aEU‘”
) ) 2rn J, OE 2n Jo OE™  OE 2 Jo )

4o (30)

Here, E™Y is some (still unspecified) set of quantities characterizing strain on the microplane level and
linked to E by the kinematic constraint

EN = ZL[E,N| (31)

which is now in general non-linear, and £™ is the set of work-conjugate microplane stresses, evaluated
from the microplane constitutive laws

(N) @ II’Q

" oEM 2

Note that the microplane normal in the initial configuration is now denoted by capital N, while lower-case n
is reserved for a certain unit vector in the deformed configuration, to be defined in the next subsection.
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4.2. Microplane strain measures

To proceed further, we need to specify what microplane strains are considered, i.e. what are the com-
ponents of E™. In order to keep track of the same material microplanes through the deformation process,
all expressions will be written in terms of material quantities. This is why it is convenient to work on the
macroscopic level with a Lagrangian strain measure. However, in contrast to the small-strain theory, the
microplane strains EN will not be obtained by linear projection of E on the microplane.

The choice of microplane strain measures is to a certain extent arbitrary, and it should be guided by their
physical sense, according to the previous experience with microplane formulations in the small-strain range.
Along this line, it seems logical to try to capture normal and tangential mechanisms (in the spirit of M1°),
or volumetric, deviatoric and tangential mechanisms (in the spirit of M2). However, in the large-strain
range, there are multiple possibilities for characterizing each of these kinematic mechanisms. As the first
step, the most natural candidates for microplane strain measures are listed here:

(a) Normal strain can be characterized in two ways:
(a.1) By the microplane stretch of the fiber initially aligned with the microplane normal N,

IN=|F-N=VN-F.F-N=vVN.C-N=,/N-(I+2E) - N=vV1+2N-E-N (33)

Note that the microplane strain measure Ay is easily expressed in terms of the projected component of
the GL tensor, Exy = N-E-N = A" : E. This is rather an exception, as we will soon see.
(a.2) By the microplane thickening of the layer of material lying in the microplane with initial normal N,

) 1 1
}'N: — =
F*“N  N.C' N

(b) Shear strain can be characterized by the angular distortion, yy, of the layer of material lying in the mi-
croplane with initial normal N, which satisfies the relation

(34)

tanyN:\/(N-C-N)(N-C’l-N)— =/ (35)

In the small-strain limit, tan yy reduces to the magnitude of the microplane shear vector gr. If each
microplane responds isotropically in its own plane (which is of course a much weaker hypothesis than
macroscopic isotropy), the direction of the shear vector plays no role, and it is sufficient to characterize
the shear strain by a scalar.

(c) In the large-strain theory, the relative change of volume is characterized by the Jacobian J = detF. The
classical small-strain volumetric—deviatoric split is now more appropriately called volumetric-distor-
tional split and is based on the multiplicative decomposition of the deformation gradient (Flory, 1961),

F=Fy-Fp=Fp Fy (36)
where Fy = J'/’1 is an isotropic tensor describing a pure volume change, and
Fp = J /F (37)

is a tensor with unit determinant describing an isochoric change of shape of “pure distortion”. The
volumetric part, Fy, corresponds to an isotropic stretch

2y = (detF)'? = J'/3 (38)
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in all directions. So it is natural to use /; as the microplane strain measure characterizing the volumetric
part of the deformation. In the small-strain limit, Ay reduces to 1 + ey where ey is the mean normal
strain.

(d) The distortional strain microplane measure (large-strain counterpart to the deviatoric small-strain mea-
sure &p) is derived from Fp in the same way as the normal strain measure was derived from F. This
means that the distortional deformation is characterized on the microplane level by one of the following
variables:

(d.1) The distortional microplane stretch of the fiber initially aligned with the microplane normal N is
evaluated as

ip = |Fp-N|=/N-F,-Fp-N=1/N-Cp-N (39)

where Cp = F}, - Fp = J2°F' . F = J?*C.
(d.2) The distortional microplane thickening of the layer of material lying in the microplane with initial
normal N is evaluated as

= 1 1

Y = (40)
|Fp - N «/N~C51~N
Note that, with previous definitions, the following relations are satisfied:
Jn=|F-N| = |J"3Fp -N| =J'"3|Fp - N| = Ay/p (41)
= 1 1 1 _
In = — . SV = A 42
N |F—t N‘ |J_1/3F[—)t K N| |F51 K N| J/AD ( )

This means that the multiplicative nature of the volumetric-distortional split is reflected on the microplane
level. Consequently, the shear measure yy defined in (35) satisfies the relation

@ N (b) d

dA
N E-N

AN
N AN

Fig. 1. (a) Microplane in initial configuration, (b) microplane in deformed configuration, (c) relationship between normal and shear
microplane strain measures.
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tam/N—\/;L2 1—\/——1 (43)

~1/2

Exploiting the formula cosyy = (1 +tan?yy)” /", we can derive useful relations
JIN = ANCOSTN, AD = ApCOSYy (44)

The geometrical meaning of vectors N, n and i and of microplane strain measures A, Ax and yy is il-
lustrated in Fig. 1.

5. Simple formulation based on microplane stretch Ay

To illustrate the basic concepts, let us first present a simple microplane formulation that characterizes the
strain on each microplane by a single scalar—the microplane stretch Ax—and exhibits one of the simplest
forms of the free-energy function. Models with other microplane strain measures will be developed in
Sections 7-9.

5.1. Stress evaluation formula

In the present simple model, the microplane strain measure E™ is just the scalar /. Differentiating the
microplane free-energy function

Yo = Yq[/n, ] (45)
with respect to An, we obtain the corresponding microplane stress measure
0%,
N = 46
N N (46)

To set up a specific form of the stress evaluation formula (30), we compute the partial derivative
0/n/OE = )»;IIN ® N (the details of this derivation are given in Appendix A) and substitute it into (30)
instead of OE™ /OE. The macroscopic sPK stress tensor is then expressed as

3
E:—/ZNANN®NdQ (47)
21
and contravariant push-forward divided by J leads to the Cauchy stress tensor
1 3
=-F - L F=_"— [ ZWJF - NeN FdQ 48
=7 2 /Q NANE N (48)

Note that F - N is a vector aligned with the fiber in the deformed configuration, and its norm is equal to the
microplane stretch Ay. Thus, (48) can be rewritten as

3 )
GZELZNANn®ndQ (49)
where
F-N F-N
= FN~ I G0)

is the unit vector characterizing the fiber direction in the deformed configuration.



522 L Carol et al. | International Journal of Solids and Structures 41 (2004) 511-557

In a large-strain theory, most equations can be obtained in both Lagrangian and Eulerian settings. Eq.
(47) directly represents the Lagrangian version of the stress evaluation formulae in the microplane model,
since every term in it is referred to the “material’’ configuration. In order to identify its spatial counterpart,
Eq. (49) still needs the replacement of the solid angle differential, which will change from dQ to dw during
deformation. The relation between the solid angle differentials in the initial and deformed configurations,
derived in Appendix B, is

’\3
dQ:AJ—Ndw (51)

Using this in (49), one obtains

a:ﬁ Qann®ndw (52)
where
24
o = 2NN (53)

2
Eq. (52) has been written in the same format as its small-strain counterpart (12). This exactly corresponds
to the philosophy of an Eulerian formulation of the microplane model in which the microplane orientations
are assigned in deformed configuration. The new stresses ¢, have the meaning of the normal “Cauchy”
stresses on these Eulerian microplanes (note the lowercase subscript). However, other quantities in (53)
such as Ay and Xy still carry uppercase subscript ‘N’, because they correspond to the stretch and material
stress of the fiber with original orientation N which then has become n. Strictly speaking, though, a fully
Eulerian expression should only refer to the deformed configuration, and therefore only contain lowercase
subscripts. This can be achieved by considering the deformed configuration as the current state, and from it
“looking back™ to the initial state. According to this the Eulerian deformation gradient and fiber stretch
may be defined as

1
f=F' f.-f=b"', L=Vn-b' n=— (54)
AN
Using these, (53) may be rewritten as
le
On = /14‘]2 (55)

(note that we could also define an inverse Jacobian j = 1/J, which is however not used for obvious notation
reasons). Since in this model the same physical fiber is referred to by ‘n’ or ‘N, all this distinction may seem
superfluous in this case. However, it may be useful in more complex models involving the layer thickening
and distortion angle. The integral in (52) is taken over all microplane orientations in the deformed con-
figuration. Formally, the domain of integration could be denoted as w, but since the deformed microplane
orientations again fill a unit hemisphere, we keep the original symbol Q.

5.2. Derivation from principle of virtual work

To get some insight into the physical meaning of the foregoing formulae, let us explore an alternative
derivation based on the principle of virtual work. We shall consider a special type of material micro-
structure consisting of randomly oriented fibers. Each fiber is assumed to be under uniaxial stress. Consider
a fiber of initial cross-sectional area 4 and length L. After deformation, the fiber has an area a, length /, and
it transmits an axial force S. The ratio S/A4 corresponds to the first Piola—Kirchhoff stress in the fiber, and so
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we denote it as oipx. On the microlevel, the constitutive behavior of the material is characterized by the
dependence of apx on the fiber stretch, A =//L, and on some internal variables (which we do not list
explicitly).

Suppose that the directional distribution of individual fibers is uniform and that @ is the initial relative
volume of all the fibers. If we divide all spatial directions (represented by points on the surface of a unit
hemisphere) into elementary sectors (represented by infinitesimal facets d€Q2), each fiber can be assigned to
one of these sectors. The relative volume of fibers belonging to an elementary sector is @dQ/2m. As
mentioned in the previous section, the sector with initial direction N and of size dQ is, after deformation,
transformed into a sector with direction n = F - N//y and of size dw = (J/A3,)dQ.

Consider an elementary volume dV in the initial configuration, transformed into dv =JdV in the de-
formed configuration. Virtual power expressed in terms of the macroscopic quantities is

Powc=0:Ddv=¢:DJdAdV (56)

where D is the rate-of-deformation tensor (symmetric part of the spatial velocity gradient L =F - F7').
Now we have to express this power in terms of the microscopic quantities. Virtual work in one fiber,

Sl = (O'lpKA) X (AL) = GIPKML (57)

is proportional to the initial volume of the fiber, AL. The intersection of fibers from an elementary sector dQ2
with the elementary volume has an initial volume © dV dQ/2m, and so the contribution of fibers from this
sector to the virtual power is

O-IPK}.-@
o = Q
dPric 5. dedy (58)

Summing the contribution of all sectors, we obtain

Pric = / aektO qoqy = @4 [ ido (59)
o 2m 2t Jo

The instantaneous rate of stretching in a certain direction n is given by the projection of D onto that di-
rection, n - D - n, and so the time derivative of the stretch A is

A=/n-D-n=A(n®n):D (60)
Substituting this into (59) and setting Py, equal to Py, from (56), we obtain
@—dV opkAn@ndQ:D =6:Ddv (61)
2n  Jo
from which
_06 / /n @ ndQ (62)
o — ) , OJ1pKA

Comparing this result to (49) we realize that @apx corresponds to 32y, i.e.,
ZN = %@GIPK (63)

So, for this idealized material with a fibrous microstructure, the thermodynamic force Xy can be identified
as the first Piola—Kirchhoff microstress in the fibers multiplied by one third of the relative volume of fibers.
Of course, the same result could have been obtained directly by writing the microplane free energy in terms
of the free energy of a fiber.
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5.3. Gaussian statistical theory of long-chain molecules

Rubber-like solids are formed by long flexible chain-like molecules joined together by chemical cross-
links into a three-dimensional network. The molecules assume random configurations that are isotropically
distributed in a stress-free state, but under applied deviatoric stress they become oriented. Suppose that the
molecule consists of n links, each of them having a length /. The total “length” of the molecule, defined as
the distance between the ends of the chain (end-to-end distance) would be n/ only in the ideal, completely
stretched state. The actual end-to-end distance, r, is randomly distributed, and its mean-square value in the
unstressed state is 7y = /y/n. The ratio r/ry can be considered as a microscopic measure of strain, closely
related to the microplane stretch Ax. In the literature on rubber elasticity, the assumption that the lengths of
individual chains are changed in the same proportion as the dimensions of the bulk rubber is called the
affine deformation assumption. In the present microplane context, it is equivalent to the kinematic con-
straint.

According to the classical Gaussian statistical theory of long-chain molecules (summarized, e.g., by
Treloar (1975) or Flory (1969)), the force transmitted by the chain is proportional to the end-to-end dis-
tance, with proportionality factor 3k7T/rj where k is the Boltzmann constant and 7 is the absolute tem-
perature. The energy stored in the chain is then proportional to the square of the ratio r/ry. This motivates
a microplane model with microplane free energy

Yolin] = 1E % (64)

where E; is a material parameter that can be related to the basic microstructural properties.
The free-energy function (64) is a special case of (45). The corresponding microplane stress is

ZN == :E)I;LN (65)

and the stress evaluation formula (49) can be written as

3 3E 3
G:E/QZN}LNn@ndQ:ZT}' Q/lan@)ndQ:ﬂ/Qann@ndw (66)
with Cauchy microplane stresses
)5
Oy, = E; /L—N (67)

T2

A peculiar feature of this model is that the microplane stresses do not vanish in the initial state, i.e., at
An = L. This is inherent to the molecular theory, because the forces transmitted by the chains are not the
only type of interaction on the microstructural level. Rubber-like solids are usually almost incompressible,
and their constant volume is kept by fluid-like interactions among the atoms (Flory, 1961). The simplest
way of describing that is to impose the incompressibility constraint, J = 1, equivalently written as

1-J=0 (68)

Since this constraint has a macroscopic character, it cannot be enforced on the microplane level. In the
presence of a constraint on the deformation field, the stress is obtained by differentiating the sum of the
free-energy potential and the left-hand side of the constraint equation multiplied by a Lagrange multiplier,
p. Differentiating with respect to the GL strain, we obtain the sPK stress

A PE) W

E Awﬁzyfmcl (69)

z:£§%Wm+prﬂﬂD:
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where X* = 0(p,P[E])/OE is the part of the sPK stress tensor obtained in the usual way from the free-
energy potential, and —pJC ' is a correction due to the incompressibility constraint. Note that, in the last
step of (69), we have used the relation 0/ /0E = JC™', proven in Appendix A as Eq. (A.2).

The expression for Cauchy stress tensor valid in the incompressible case is obtained by the transformation

1
J:jF-E-Ft:a*—pI (70)

where 6* = J~'F - £* - F'. Eq. (70) shows that the Cauchy stress is determined up to an arbitrary multiple of
the unit tensor, i.e., up to an arbitrary superimposed hydrostatic pressure. This suggests that only the
deviatoric part of & is uniquely determined while the volumetric part is arbitrary. Indeed, the deviatoric
Cauchy stress

o_dev — Jdev P efdev . _pjdev I = efdev 6" (’71)

is independent of the Lagrange multiplier p. Note that the volumetric—deviatoric split has a multiplicative
form only for the deformation gradient or the rCG deformation tensor, but the Cauchy stress tensor is still
decomposed in the additive way, even under large strain, because the hydrostatic pressure is related to its
trace and not to its determinant.

Returning to our specific example, we realize that Eq. (66) should be rewritten as

3 3 1
gdeV:JdeV:E/Qonn®ndcozﬂ/gan(n®n—§l>dw (72)

The expression in the parentheses, n @ n — %I, has a similar structure as tensor & defined for the small-
strain theory in (9). In the small-strain evaluation formula (10), tensor & is multiplied by the deviatoric
microplane stress, op. The present simple large-strain model could be directly transcribed in terms of Ap, Xp
and op because, due to the incompressibility constraint, there is no difference between Ay and
Ap = AnAy =N L.

Another interesting point is that the present microplane model is exactly equivalent to an invariant-
based tensorial model, because the integral of 112\1 over the unit hemisphere can be expressed in the closed
form; see Eq. (C.3) derived in Appendix C. Interestingly, the average of Jvi, over the unit hemisphere is equal
to one third of the invariant

L=trC=C:1=72+4,2+) (73)

defined as the trace of the rCG tensor or, equivalently, as the sum of squares of principal stretches 4;, 4,
and A;. The principal stretches are eigenvalues of the right stretch tensor U = C'/?, and their squares are
eigenvalues of the rCG tensor C.

The macroscopic free energy

3 , 3 1 1 1

obtained by closed-form integration is recognized as the elastic potential of the well-known neo-Hookean
material model (up to a missing constant term that makes the energy in the undeformed state vanish but
does not affect the stresses). Substituting into (69) and (70) and taking into account that J = 1, we get the
sPK stress tensor

_pPE) & 1 o(trC)
=" P3E =255

—pJC' =EI-pC! (75)
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and the Cauchy stress tensor

Note that the deviatoric part of the Cauchy stress,
o_dev — Eibdev (77)

is, as expected, independent of p. Here, b®' = .#% : b is the deviatoric part in the additive sense.
Egs. (75) and (76) could alternatively be obtained from the corresponding microplane stress evaluation
formulae using the closed-form integrals derived in Appendix C.

6. Refined formulations based on microplane stretch iy
6.1. Non-Gaussian statistical theory of long-chain molecules: Treloar model

The simple neo-Hookean model derived from the Gaussian statistical theory of long molecular chains
combined with the incompressibility constraint captures the basic mechanical behavior of rubber-like
solids, but it is appropriate only as long as the extension of the molecules remains well below their maximum
possible extension, i.e., only at small and moderate strains. At large extensions, the relationship between the
end-to-end distance and the force transmitted by the chain deviates from linearity. Improved, non-
Gaussian treatment of a single chain was developed by Kuhn and Griin (1942) and James and Guth (1943).
They showed that the mean tensile force on a randomly joined chain is given by

kKT _i1F
/= / z {nl ] (78)
where %! denotes the inverse Langevin function, approximated by the infinite series
9 297 1539
g_l[z]:3z+§z3+mzs+ﬁz7+~-- (79)
If the non-linear terms are neglected, the Gaussian theory is recovered as a special case.

James and Guth (1943) also developed a model for a network of randomly joined chains, based on the
concept of affine deformation (kinematic constraint) and on the simplifying assumption that the network of
N chains is equivalent to three sets of N/3 chains oriented along the principal axes. In terms of the
microplane theory, this assumption means that the integral over the unit hemisphere is replaced by the sum
over three mutually orthogonal directions (with a proper scaling factor). However, such a three-point
numerical integration scheme is exact only for special integrands, and in a general case it can be considered
only as a rough approximation. This deficiency was removed by Treloar (1954), who took full account of
the angular distribution of the individual chains and performed the integration graphically for the special
case of simple extension. Treloar and Riding (1979) extended this treatment to the case of biaxial strain,
using a numerical quadrature method.

The Treloar model is equivalent to the microplane model with microplane free energy given by

YolAN] = %EAA[}LN] (80)
where

2
N 3 9 99 1539
APN] = 0 g*l[z]dzzzzi,+%xi,+ﬁzg,+mz§+--- (81)
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is the primitive function of the inverse Langevin function. The quadratic term corresponds to the Gaussian
theory and the subsequent terms are higher-order corrections that cannot be integrated in a closed form
over the unit hemisphere.

6.2. Model with vanishing initial microstresses

The Treloar model based on the Langevin function provides a correction to the simple neo-Hookean
model at very large strains. However, certain discrepancies between theoretical predictions and experi-
mental results are observed already at relatively moderate strains. To alleviate them, Thomas (1955)
proposed to enrich the free energy derived from Gaussian statistical theory by a term inversely proportional
to the square of the chain end-to-end distance. In terms of the microplane model, this means to replace the
potential (64) by

Wolin] = 1E0 2% + Eniy (82)
where E;, and E;, are constant parameters. The material microplane stresses is then given by
oY , _
2N = 61: =Ejin— Enly (83)

and, if the material is incompressible, the Cauchy microplane stress is
o, = }?\IZN = E},1)"i1 — E).Q/ALN (84)

If the model parameters £;; and E, are equal, the microplane stresses vanish in the undeformed state. This
can be a desirable property for applications to materials in which the microprestress in the initial configu-
ration does not have a physical justification.

If the exponent —2 in the additional energy term is replaced by —3, one can construct a model with
vanishing initial microplane stresses that is integrable in a closed form and, under the assumption of in-
compressibility, is equivalent to the neo-Hookean material. Indeed, in Appendix C it is shown that the
average value of )&3 over all the microplanes is equal to the inverse of the Jacobian; see Eq. (C.11).
Therefore, in the incompressible case, the total contribution of the term with )&3 to the macroscopic free
energy is constant and has no effect on the macroscopic stress tensor. So this term can be used to redis-
tribute the microplane stresses such that they vanish in the undeformed state.

Starting from the potential

XKoo S
Yolin] =Ej| D4+ -2
N ;v( 3 + 3 6) (85)
we obtain microplane material stresses
oY
SN =2 = E(An — A (86)
GAN

and, still assuming J = 1, microplane spatial stresses
On = IEN=E; (2 — 1) (87)

Note that these microplane stresses indeed vanish in the undeformed state, as intended. Their evolution
with /y is represented in Fig. 2. The resulting macroscopic potential in the incompressible case,

3 A 13 7, 13 [ 5 3 1
A Q—-E > [ 2d0+-E,— -2 [ d@=-E,I -
Po 215/9 al/N]dQ =5 ”'zn/g nd@ 3 Azn/QANd 6 2n/9d y Bl =3)  (88)

is the standard elastic potential of the neo-Hookean material.
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Fig. 2. Evolution of material and Cauchy microplane stresses with Ay (at fixed J = 1) for the improved model based on /.

6.3. Small-strain limit

If the strains are sufficiently small, all model equations should collapse into the corresponding equations
of the small-strain theory. The transition to the small-strain limit is straightforward for models with
vanishing microplane stresses in the undeformed state. In that case, we can set J ~ 1, Ay =~ 1 and n = N and
substitute these approximations into (49). The small-strain formula (12) is then recovered. However, special
care is needed in the presence of initial microplane stresses. In this case, the leading term in the expansion of
2 around Ay = 1 is a strain-independent constant, and the corresponding integral contributes only to the
volumetric part of &, which is undetermined. To get the deviatoric part correctly, it is not sufficient to
consider the second term in the expansion of Xy but also the second terms in the expansions of J, Ay and n.

To get insight into the origin and role of individual terms, let us write the microplane stress in the form

IN(AN) = Zno + 2 (An) (89)

where Xyo = 2Zn(1) is the value of the microplane stress in the ‘“unstretched state” and
Zni(An) = Zn(An) — 2n(1) is the increment of the microplane stress due to stretching. Note that Xy is a
constant and Xy is small if Ay is close to 1. The small-strain theory is based on the assumption that the
components of the displacement gradient are small compared to 1. Using the notation and the approxi-
mations from Appendix D, we can write the expansion of formula (49) around the undeformed state as
follows:

0'23(1;7738\])/(21\10—}—21\11)(1—‘r-SN)(,/V‘-i-JV-S-i-S-JV—JV-w-I—w-JV—ZSN./V)dQ-I-O[EZ]
Q
p)
:32;‘0/((1—3gv—eN)m+m-s+s-M—m-w+w-m)dg+%/ZNI,/V'dQ+0[62]
Q Q

(90)
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If X0 = 0, we get the formula
a:i/ZNN®NdQ+O[62} (91)
2n Jgo

which has the same structure as formula (12) used in the small-strain theory. In the general case, the right-
hand side must be augmented by a term proportional to Xy, which reflects the influence of the micro-
prestress. Substituting ey = A" : ¢ and exploiting formulae (18) and (19), we can evaluate the factor mul-
tiplying 2o in (90) as

3

o (1 =3ey —en) N+ N e+ N —N - 0+o N)dQ
Q

3 2
=(1- 38V)I—§8VI—§£+28

8
= (1 — 28\/)1 + gSD (92)

where ep = ¢ — &yl is the deviatoric part of the small-strain tensor. The final form of the stress evaluation
formula is then

o — (1 — 28\/)2]\]01 +§ZN08D —|—i / Zle/‘/‘d.Q (93)
5 2 Jo

Interestingly, even though the microprestress Xy corresponds to a hydrostatic stress state, it contributes to
the deviatoric part of the macroscopic stress whenever the strain has a non-zero deviatoric part. This
contribution can even be quite substantial, as illustrated by our example of a microplane version of the neo-
Hookean material with Yy given by (65), for which Xy = E; and Xy, = E;ex + O[¢?]. In this case, the
contribution of Xy, to the deviatoric stress is (8/5)E;&p while the contribution of Xy; is only (2/5)E;ep. On
the other hand, for the microprestress-free version of the neo-Hookean material, with Xy given by (83), we
have Xno =0 and Xn; = 5E;en + O[€?]. In both cases, the small-strain macroscopic elastic law reads
o = 2E;¢p (plus an undetermined hydrostatic term), and the model parameter E; therefore has the physical
meaning of the macroscopic shear modulus, G.

6.4. Compressible extension

So far, we have considered models based on the microplane stretch as being subjected to the incom-
pressibility constraint. For models with non-zero microstresses in the initial state, this constraint is essential
because it generates a hydrostatic pressure that ensures that the macroscopic stress can vanish. However,
the model with vanishing initial microstresses presented in Section 6.2 may also be used without imposing
incompressibility, as described here.

Consider again the microplane energy function ¥g[An] defined by Eq. (85) of Section 6.2. Material
microplane stresses Xy, obtained by derivative with respect to Ay, are not affected by the incompressibility
assumption, and therefore are still given by formula (86). The Cauchy microplane stresses o, are, however,
different because they depend on J according to (53). So, in the compressible case, (87) must be replaced by
the more general formula

=E—(x—1) (94)

In the small-strain limit, the model collapses into the small-strain microplane model with oy = Enén as
the only microplane stress. From the previous equations and plots of Xy and oy, it follows that in the small-
strain regime
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0N
OAn

0
en AN —1, on~En,  Ex = N = 5E; (95)

In=1J=1

el BN
This value of Ex can be substituted into (24) with all the remaining microplane moduli equal to zero, to get
the macroscopic moduli
EN EN 5
G=X=F, K=2=-¢G 96
57 33 (96)

Same as before, the coefficient £; has the meaning of the (initial) shear modulus, G. In the compressible case
we also obtain an initial bulk modulus K, but it is not independent of G, and the resulting Poisson ratio is
fixed to v = 0.25, same as for the small-strain model with oy only.

By inserting microplane potential (85) into integral formula (1) and applying the expressions derived in
Appendix C for the integrals over the hemisphere of /3 and Ay’ without the incompressibility constraint,
one finally obtains the macroscopic free energy

3 1 2

which also vanishes in the undeformed state (for C =1 and J = 1) and corresponds to a basic form of
compressible neo-Hookean material (Ogden, 1984).

Macroscopic sPK stress tensor can be obtained either from the microplane material stresses (86) inte-
grated over the hemisphere in the initial configuration using (47), or by partial differentiation of the
macroscopic potential (97) with respect to the GL strain E. Either way, the resulting expression is

ZzG(I—}C') (98)

The Cauchy stress tensor may be evaluated either by push-forward of the sPK stress and scaling by 1/J, or
from the Cauchy microplane stresses (94) integrated over the hemisphere in the deformed configuration
using (52). Either way, the final expression is

1 1
6=G (b JI> (99)
Note that, if the constraint J = 1 is assumed, this compressible model coincides with the incompressible
one developed in previous Section 6.2. On the other hand, the deviatoric part of the Cauchy stresses is
6%’ = b*/J, and therefore it only differs from its incompressible counterpart (77) by a factor 1/J. The
hydrostatic behavior of the model is obtained by specifying b = J?/*I in previous equation, which leads to
the Cauchy volumetric stress

oy = “T" _ G =) (100)

This is a function with positive slope 3K = 5G at J = 1, which exhibits a plunge to minus infinity for J — 0,
and a decreasing slope in tension with a peak aboutJ = 3 and a slightly decreasing slope beyond that. This
kind of tensile behavior in terms of Cauchy stresses is also observed in other models in further sections and
it will be discussed there. In any case, it is clear that once the shear constant G is determined, the volumetric
behavior of the model is fixed, in agreement with the initial fixed Poisson ratio of 0.25. To overcome this
limitation and to be able to adjust the volumetric behavior independently of the behavior in shear, it is
necessary to separate the free energy functions in two parts, one of them depending only on the volumetric
deformation measure /; (or of its third power, J = /1? ), and the other one on the distortional stretch /p, as
will be done in the following section.
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7. Microplane formulation based on ij, Ap: compressible neo-Hookean material with unrestricted v

In materials such as rubber, the behavior is controled not only by long polymer chains, but also by the
bulk matrix in which these chains are embedded. As a first approximation, the matrix can be considered as
a fluid providing some volumetric resistance to the overall deformation. This would motivate the devel-
opment of microplane formulations based on J (or 4y = J'/?) and Ay. However, it is more convenient to
exploit the relation Ay = J'/31p and consider /p and /; as arguments of a potential. This leads to simpler
expressions with uncoupled additive terms.

7.1. General stress evaluation formulae

Consider the microplane free energy in the form
VYo = Yoll, n, ¢ (101)

where € is a set of internal variables, present only if the material exhibits dissipative behavior. Using (30),
the macroscopic stress evaluation formula for the sPK stress may be expressed as

3 0¥, 0l 0¥, dlp
= — )dQ 102
2 Jo ( 04y OE = 0/p OE )d (102)
After appropriate substitution of derivatives developed in Appendix A, this can be rewritten as
1 —1 3 —2,-1 AD
E—zn/QZJiJC dQ+2n/gZD<),J ip N®N 3 C ' |dQ (103)
where
0¥, 0%,
2y = 2p=—— 104
T TP (104)

are the material microplane stresses.

Suppose that the volumetric and distortional effects are decoupled in the sense that the mixed derivative
of the microplane free-energy potential with respect to 4y and Ap vanishes. In this case, the microstress X
does not depend on Ap (and therefore on the microplane orientation), and it can be taken out of the first
integral, which gives

3 )
r=,C"+ = / So i NeN—2c " )da (105)
2n Jo 3
Contravariant push-forward of (105) and scaling by 1/J leads to the Cauchy stress tensor
3 ,

6=2J 'F-C".F +-— / Sp( 47225 F-N@N-F' — Dp.cl.F)dQ (106)

2nJ Jq 3

which, after substitutions and rearrangements, may be expressed as

- 3 2pp I

=X T+ —~ )de 107
[ T4y + m [2 i (n ®n 3> ( )

Finally, substitution of expression (51) for the solid angle differential in the initial configuration in terms of
the solid angle differential in the deformed configuration leads to the fully Eulerian version of the stress
evaluation formula,
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3 I
O'—O'Vl+ﬁ/gdd(n®n—§)da) (108)
with Cauchy microplane stresses
)4
o, =1;°%)y, 04= ?2]3 (109)

As it could be expected, formula (108) looks exactly the same as its small-strain counterpart; see (10) with
on = 0, 61 = 0 and oy =same for all microplanes.

7.2. Example: compressible neo-Hookean material

We start from the microplane free energy (85) with Ay replaced by ip and the constant parameter £,
denoted as G, and we add a volumetric function g[J]/3 satisfying the conditions

_de

gl =0, glj= 5| =0 (110)

J=1
Note that, with these assumptions, the free energy
Wolis, in] = G(p + 325" —2) +gl] (111)

vanishes in the undeformed state (for Ap =1 and J = 1).
Using (104), the material microplane stresses may be obtained as

Sy =24¢g V], Zp=G(Up—Ip) (112)
and, using (109), the spatial or Cauchy microplane stresses follow as
_ g _Gs
=gl ou=—05-1) (113)

All these microplane stresses vanish in the undeformed state. The evolution of Xp and ¢4 with Ap at
constant Ay =J =1 is similar to that of Xy and ¢, with Ay in Fig. 2.

7.3. Equivalent macroscopic model of the compressible neo-Hookean type

By inserting microplane potential (111) into integral formula (1) and applying expressions (C.3) and
(C.12) derived in Appendix C for the integrals over the initial hemisphere of 112\1 (in which Ay = J'3/p may
be substituted and J!/? extracted out of integral) and 153, one obtains a tensorial expression for the
macroscopic free energy in the form

1
po‘[’:i/‘I’QdQ:—G(trCD—3)+g[J] (114)
2 Q 2

which corresponds to a specific type of compressible neo-Hookean material with an uncoupled energy
potential consisting of a sum of the distortional strain energy and volumetric strain energy function of the
general form g[J] (Ogden, 1984). Note that this potential vanishes in the undeformed state (for Cp =T and
J=1).

The macroscopic sPK stress tensor may now be obtained either from the microplane material stresses
(112) integrated over the hemisphere in the initial configuration using (105), or by partial differentiation of
the macroscopic potential (114) with respect to the GL strain E. Either way, the resulting expression is
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trC
r =J"gUCy + G (1 - r3 = ch) (115)

Macroscopic Cauchy stresses may also be evaluated either by push-forward of the sPK stress, or from
the Cauchy microplane stresses (113) integrated over the hemisphere in the deformed configuration using
(108). Either way, the final expression obtained is

trb
6 =g+ GJ s <b - %1) (116)
or, by introducing the distortional part of the left Cauchy—Green tensor bp = .J /b,
G trb
a:g’[J]I—f—j(bD— r3DI) (117)

Note that the right-hand side is additively decomposed into volumetric and deviatoric parts and, therefore,
the volumetric and deviatoric Cauchy stresses can be expressed as

tro G
ov=—7 =gV, * = (bp)" (118)

3 J
It is a convenient feature that a clean additive decomposition is obtained in the deformed configuration, in
spite of the fact that the fundamental volumetric—deviatoric decomposition in material configuration has

been established in a product form.
7.4. Small-strain limit

Since all the microplane stresses vanish in the initial configuration, the small-strain limit of the present
model is easy to construct. In the stress evaluation formula (107), J, A; and /p can be replaced by 1 and n by
N. Alternatively, one could simply replace dw by dQ in (108). In any case, the model collapses into the
small-strain microplane model with microplane stresses gy and op, which are equal, up to terms of a higher
order, to Xy and Xp (and also to g, and a4, which differ from Xy and Xp by terms of the order O[¢?)).

The initial microplane moduli can be evaluated as

aZD o aO'd

En = —2 = _¢ =5G 119

P b |, bl (119)
GZJ aO'V

Eyv = —2 = = 390"[1 120

v ol . o4 - g"[1] ( )

where the “subscript” A = 1 after a vertical line means in simplified notation that the partial derivatives are
evaluated in the undeformed state, i.e., at 4; = 1 and Ap = 1. Substituting these values of Ey and Ep into
(24), with all the remaining microplane moduli set to zero, we can verify that the physical meaning of the
material parameter G is indeed the shear modulus of elasticity, and we find out that the second derivative of
the potential function g at J = 1 has the meaning of the macroscopic bulk modulus K. For the present
model, the Poisson ratio can take any value between —1 (when K < G) and 0.5 (when K > G).

8. Formulation based on Ay and Ax: compressible Mooney-Rivlin material with restricted v

Previous microplane formulations based on Zp and Z4; (or Ay and Aj) were very useful to establish the
basic aspects of finite strain microplane models, but only achieved to reproduce macroscopic hyperelastic
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potentials of the neo-Hookean type, i.e. involving J and the first invariant of C. However, it is well es-
tablished that for materials undergoing large elastic deformations such as rubber, this is too simplistic, and
realistic models must at least involve the second invariant of C or, equivalently, the first invariant of C™'
(Ogden, 1982, 1984). In this section, a general formulation involving Ay, Ay and tan yy is presented which,
for particular choices of potential, will lead to macroscopic models of the compressible Mooney-Rivlin
type.

As explained in Section 4.2, variables Ay and Ay are simply related by Ay = Ay cosyy Where yy is the
shear distortion angle (35). This means that the new variable 1y could as well be replaced by the distortion
angle, and end up with a function of 4y and tan y only. In the same way, one could replace tan yy in terms
of Jn and Ay, and end up with a function of these two variables only. In practice, the various forms are fully
equivalent and each may be more convenient for certain purposes, although some of them might show
singularities at the undeformed state, as it will be shown in the following subsections. For these reasons,
and for the sake of generality, in the general derivations of Section 8.1 all three variables Ay, Ay and yy will
be considered. Although redundant, this is not incorrect (one of the arguments can always be expressed in
terms of the other two), and allows us to see what form is obtained for each of the terms in the equations
that follow. The choice between them can be done later on the basis of convenience.

8.1. General stress evaluation formulae

We consider a microplane free energy of the general form
q/g = Y’Q[}LN,ZN,tanyN,f] (121)

where ¢ is an appropriate set of internal variables, needed only if the material exhibits dissipative behavior.
Using (30), the macroscopic stress evaluation formula for the sPK stress may be expressed as

3 @)LN = GZN a(tanyN)
X=— IN— +t2IN—+ 27— |dQ 122
21I/Q<N6E+N6E+T T (122)
where
ZN_éTQ « 0%, o¥q (123)

T N T o 7T dtanyy

are the material microplane stresses. After appropriate substitution of derivatives (A.5), (A.12) and (A.15)
developed in Appendix A, the formula for the sPK stress tensor can be rewritten as

3 ) - = 2 1
== [ | EN@N+ILC ! NeN-C'+ T [ SN@N-C'-NaN.-C']|de
27'[ Q iN tan yN }'N
(124)
Contravariant push-forward of (124) and scaling by 1/J leads to the Cauchy stress tensor
a:i/ ﬁF-N®N~F‘+2N?F" NoN-F'+ = (Lp NeNF - 2F NoN-F'))de
217 Jo \ N tanyy \ 2, h
(125)
where use has been made of the relation F- C™' = F'. We can further substitute F - N = Ayn, with n being

the unit vector in the deformed configuration along the fiber initially aligned with N. In analogy to that, we
can write F~'- N = A 'n, where n is a unit vector normal to the deformed microplane. This substitution
leads to
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3 e 21 o
=— ANZND@ D+ ANZND®DN+——F———(n®n—n®n) |dQ 126
¢ ZRJ/Q<NN®+NN® JrcosyNsmyN(@ ®)> (126)
A final manipulation is necessary to provide the tensor structure of the type n® t +t ® n present in the
tangential term of the small-strain formula (13), which is expected to be recovered in the Eulerian form of
the integral equation. A term of such type may be obtained from the third term in the integrand, by in-
troducing the unit vectors
n—+n n-+n

= = s i:
[n+n|  2cos[yn/2]

n—n _ n—n
n—n|  2sin[;y/2]

(127)

Vector n bisects the angle between n and n, and vector t is perpendicular to n and at the same time indicates
the direction of shearing; see Fig. 3. A possible physical interpretation of the three normals n, n and n is
based on three types of microstructures or micromechanisms within the heterogeneous material: “fibers”,
“platelets” and ‘“‘shear boxes”. If these elements are initially aligned with the same normal N, their ori-
entation in the deformed configuration is described by three vectors that are in general different: the new
direction of the fiber is given by n, the new normal of the platelet by n, and the new alignment of the shear
box by n, which bisects n and n. -

If n is replaced by ncos[yy/2] + tsin[yy/2] and n is replaced by ncos[yy/2] — tsin[py/2], the difference
between the direct products n ® n and n ® n that appears in (126) can be transformed into

nOn-n®i=sny@et+ton) (128)

Substituting this relation into (126), one obtains an alternative useful form of the Lagrangian integral
expression for the Cauchy stresses,

2t
COS Jn

O';J/Q(;»NZNH®H+}LN2NH®D+ (ﬁ®f+f®ﬁ))ds2 (129)
in which the desired “shear-like” structure has appeared in the tangential term, and the factor sin yy has
disappeared from the denominator. Note that, in the limit of small strain, n and n tend to coincide and
sin yy vanishes, reasons for which the previous integral expression (126) could lead to indetermination in
that limit case while the new expression (129) remains well-defined.

At this point of similar derivations in previous sections, the solid angle d©2 corresponding to original
microplane direction N was expressed in terms of the current solid angle dw corresponding to current
microplane direction n. In the present case, however, for the same original orientation N there are three
different deformed microplane directions: n, i and n. This adds some complexity to the derivation of a fully
Eulerian stress-evaluation formula. In order to achieve this result, the single integral of Eq. (129) may be
split into three integrals in initial configuration, and for each of them dQ is substituted by a different de-
formed solid angle: dw defined in (51), d@ = (45, /) dQ which corresponds to the transformation of plane
normals around 0, and finally d@ = (Jx/8 cos®[yy ,]) dQ where Jy = det[U/Ax + U™'Zy]. These relations

3/

Fig. 3. Definition of vectors @i and t.
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are derived in Appendix B. By splitting the integral and introducing all previous equations into (129), one
obtains

3 [z 3 % 3 [ X8cos}fyn/2] - = = _  ._
o—— Nan®ndw+/2Nn®nd@+/T_COS[VN/](n@Ht@n)d@ (130)
21 0 J 2n Q A‘N 2n Q JJN COS YN

Recovery of the small-strain format still requires one more step. Lagrangian integral formulae such as
(129) have the meaning of summing all the terms involving different directions n, n and n, which were
contributed by each microplane of initial direction N. Eulerian integral formulae may be interpreted in the
opposite (dual) way: as collecting the contributions of microplanes with different initial orientations N, N
and N, which produce terms involving the same deformed direction n.

In Eq. (130), each integral can be interpreted as a sum, and the aforementioned collection corresponds to

regrouping of terms from the three integrals with the same transformed direction n. This leads to

3 3
a:ﬁ/gann®ndw+ﬂ/Q%(n®t+t®n)dw (131)
where
14 ¥ 3
2 2N 162= < /2
oy = NIN | 2N atzw (132)
J N JJIN €08 5

are the Eulerian variables introduced at end of Section 5.1. In (132), Ay is the thickening of the microplane
which, transformed as a plane normal has become n with corresponding material stresses 2; and yg is the
shear distortion of the microplane which, transformed as a “‘shear box” has become n with material shear
stresses 25.

8.2. Hyperelastic microplane model based on ly and Ay and equivalent compressible Mooney-Rivlin model

Consider the microplane energy function

Y & NS
'PQ[ANJLN}—A(T-‘FT—E +B 7—"_?_6 (133)

the exponents of which are motivated by the availability of closed-form solutions for the integrals of such
terms over the hemisphere as developed in Appendix C, and the coefficients are adjusted so that the po-
tential vanishes in the undeformed state.

The material microplane stresses are obtained by taking partial derivatives of the potential,

p w ,
0% _ _a_Q:B(,{;_,ag) (134)

_ 4 3y
ZN’aAN =A(N—2), ZN*a,IN

These microplane stresses vanish in the undeformed state (Ay = Ax = 1). The evolution of Xy with /n 1s the
same already shown in Fig. 2 for the previous model of Section 6.2, and the evolution of X5 with Ay ex-
hibits a similar intuitive shape, as represented in Fig. 4.
Cauchy microplane stresses are obtained applying (132), yielding
A _

anzﬁ(;,;—1)+3(1—/1§5), o =0 (135)
where Jx is the thickening of the plane with initial normal N, i.e. the plane whose normal after deformation
became n. Note that tangential Cauchy stresses are zero, in spite of having the indirect involvement of the
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Fig. 4. Evolution of material microplane stresses Xy and Zy for the model based on Ay, An.

shear angle through Ay = /Jy cos y,. This result is in accordance with the results of the small strain reduction
of the model in the following section.

The macroscopic hyperelastic model equivalent to this microplane formulation is obtained by inserting
the microplane potential (133) into integral formula (1), and applymg the expressions derived in Appendix
C for the integrals over the hemisphere of 43, Ay, 4> and 3. This leads to the expression for the macro-
scopic free energy

powzg(trc—3)+§(trc1—3)+AG—1> +B(J - 1) (136)

This potential corresponds to a compressible formulation of the Mooney-Rivlin type. Note that
trC™' = I,/J* where I, is the standard second invariant of C expressed in terms of principal values as
L = 735+ 235 + 2377, therefore for no volume change J =1 one recovers the standard expression
po¥ = (4/2)(I, —3) + (B/2)(I, — 3) (Ogden, 1984). Note also that this potential vanishes in the unde-
formed state (C=1,J = 1).

Same as in previous sections, the macroscopic sPK stress tensor may be obtained either from the
microplane material stresses (134) integrated over the hemisphere in original configuration using (124), or
by partial derivative of the macroscopic potential (136) with respect to the GL strain E. Either way, the
resulting sPK stress tensor is

T =Al+ (BJ——)C '—BC? (137)

which vanishes in the undeformed state.
Macroscopic Cauchy stresses may be evaluated by push-forward of the previous expression and mul-
tiplication by factor 1/J, or by integrating the Cauchy microplane stresses (135) using (131), which leads to
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a_}<Ab+ (BJ—‘;)I—Bbl) (138)

The Cauchy stress also vanishes in the undeformed state. If desired, the Cayley—-Hamilton theorem can be
used to obtain alternative expressions to (137) and (138), in which the exponents of the three terms on the
right-hand side are increased or decreased by a certain integer value. Note also that, as already indicated
before, by setting B = 0 all these expressions collapse into those of the previous compressible model of
Section 6.4 based on An only.

8.3. Reduction to small strain and initial elastic moduli

For the small-strain reduction, the microplane potential (133) may be alternatively expressed in terms of
An and tan yy, since intuition combined with the arguments in Section 8.1 suggest that this model should
collapse into the “N-T” or M’ small-strain microplane model with microplane stresses oy = Enéen and
or = Erer (Bazant, 1984). To do that conversion, we replace Ay by /Jy cos yy according to (44), which leads
to the alternative form of the microplane potential

) oIS N N 5
Wo[in, tanyy] = 4 <7N+% - 6) +B<% cos 2 )y +?N cos® yy — E) (139)
and to the alternative microplane material stresses
oY
N = 6):]2 = AN — A) + B(23, cos’ py — Ax €052 9y) (140)
oY _
:m :Btan'yN(}sz — )LiICOSS VN) (141)

Note that ¥, Xy and 2t all vanish in the undeformed configuration (Ax = 1, yy = 0). Now, the normal
small-strain variables may be approximated by

enmAn—1, onm 2y (142)
and the initial modulus associated with ¢y is given by

_ 02n[An, tan py]

Ex = o =A(1 +473") + B(2ancos’ py + 32y cos 7 9y)

in=1 0 In=lyn=0 S(A +B)
IN=lyN=

(143)

which, to keep En positive, requires that 4 + B > 0. In the same way, the small-strain tangential variables
are identified as

ér Rtanyy, oT =2t (144)
and the initial modulus associated with tan yy is given by

02N, t :
Er = 02r[An; tan yy] — B(/l;f — 23, cos” py(1 — 5sin’ yN))|

O(tan yy) 0 (145)

PR in=1,yn=0

Surprisingly, the initial shear tangential modulus turns out to be zero, which brings the model back to the
“N-only” or M1 small-strain microplane formulation, similar to what happened with the Ay model in
Section 6.3. This may be explained by the fact that, in spite of enriching considerably the model for large
strain (from neo-Hookean to Mooney-Rivlin), the new microplane strain Ay coincides in the infinitesimal
range with Ay, and therefore the only consequence that should be expected is an increase of Ey as reflected
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by (143). Note that this result is consistent with the zero Cauchy tangential stresses (124b) obtained in the
previous section.
Modulus Ey can be introduced in the general formulae (24) and (25) derived in Section 3.2, with all the
remaining microplane moduli equal to zero, to get the macroscopic elastic moduli
_ EN EN o 5 EN - 5

G=—"=A+B, K=—=>G, E=-—2

3 T =3 5 =3G v=025 (146)

8.4. Some results under simple macroscopic loading scenarios

Here, the macroscopic behavior of the compressible Mooney-Rivlin microplane model with fixed
Poisson ratio 0.25 is illustrated and compared to that of its neo-Hookean counterpart of Section 6.4. For
this purpose, three pairs of values of constants 4, B have been selected, which always sum unity so that the
shear modulus G = 4 + B = 1. These are 4 = 1, B = 0 (for which the neo-Hookean model of Section 6.4 is
recovered), A = B = 0.5, which gives a balanced Mooney-Rivlin model, and 4 = 0, B = 1, which would
correspond to a model dual to the first one with free energy dependent on tr C™' only.

Analytical solutions for the uniaxial, biaxial, volumetric and other simple loading cases may be obtained
by first isolating the principal components of the Cauchy stress tensor (138),

Jo,=A)}—=—-=4+BJ, i=1,3 (147)

In the uniaxial loading case, we have 0, =03 =0, 4, =43 and J = /llig. By enforcing o, = 0, after
simple manipulations one obtains the condition

(JJ5 —1)(A+Bl)=0 (148)
which, for general values of 4, B can only be satisfied if 4, = ifl/ * Note that, for small deformations, this
relation implies v = —04,/041;,_; = 0.25, as expected. Substituting 4, = 43 = 27 and J = 2)/? back into
(147) written for i = 1, the uniaxial stress—strain relation is finally obtained in the form

o1 =AR” =i +B(1 -1, (149)
The initial slope of the curve is

60’1 3 1/2 ) 5 -7/2 5 5

— =A( =4 A B=-1 =-(A4+B)==G 150

a)hl et <2 1 + 1 + 2 1 el 2 ( + ) 2 ( )

which, as expected, coincides with the elastic modulus E given in Eq. (146).
In a similar way, the model response under biaxial loading (characterized by o, = 7, 03 =0, 4; = 1, and
J = 4})3) leads to

=170 =" (151)
with a resulting stress—strain relation

o1 = AR =33+ B(1 = 27F) (152)
and initial slope

60'1 <2 -1/3 8 11/3) 10 —13/3 10 10

— =Al =1 +=2 +B— =—(A+B)=—G (153)

0 P 37 371 371 =t 3 3

In the case of volumetric loading (¢, = 0, = 63 = 0y, 4| = 4, = 43 = J'/?), one directly obtains
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oy =AJ P =T +B(1—-J ) (154)
and initial slope
Gou =A(-J P67+ B2 = 5(4+ B) = 5G (155)
o(J3) |, 37|,

which, as expected, coincides with bulk modulus 3K given in Eq. (146).

The uniaxial and volumetric loading results for the three pairs of values of 4, B are represented in Fig. 5.

Biaxial tests give qualitatively similar curves at intermediate locations in between the previous two cases.
Note that, in these tests, the three models give qualitatively similar results in compression. In tension,
however, they are different. The third model (4 = 0, B = 1) always tends to a horizontal asymptote at stress
a1, = B, while the balanced Mooney-Rivlin and neo-Hookean models evolve progressively farther away
from this behavior, with higher stresses in uniaxial tension, and lower stress after a maximum for the
volumetric curve. This is due to the two negative exponents in terms with factor 4 in the volumetric re-
sponse equation (155), which do not appear in the uniaxial (149) or biaxial loading (152). This maximum is
anyway obtained in Cauchy stresses, while the area surface on which they are applied is growing. More
intuitive may be the nominal stress, which remains proportional to the load applied on a material specimen
throughout a laboratory test, and therefore one would expect it to always grow with applied displacement
for an elastic material. Because of coaxiality (always present in isotropic hyperelasticity), the nominal stress
may be related to the Cauchy stress traction on the same plane by the ratio of the initial to the deformed
area given by the factor J//; (Nanson formula) which, for volumetric deformation, is equal to J%>. In the
expression of volumetric stresses (154), this product brings the exponent of the first term with factor 4 to
positive, thus finally yielding a monotonically increasing curve for the nominal stresses as expected.

In order to better highlight the improvement brought about by the compressible Mooney-Rivlin mi-
croplane model (B # 0) with respect to its neo-Hookean counterpart of Section 6.4 (B = 0), it is also of
interest to consider the case of biaxial extension with no volume change (J =1 = 1;/,43; 43 = (/1122)71),
which has been documented with tests on rubber materials such as those by Jones and Treloar (1975). In
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Fig. 5. Uniaxial (a) and volumetric (b) response curves for Mooney-Rivlin microplane model.
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Fig. 6. Jones and Treloar test (biaxial extension, no volume change), for different values of 4, B at 1, = 0 (a), and different values of 4,
for 4 =B =0.5(b).

those tests, 4, is held constant while /4, is increased, and what is represented is o1 — 0, against A;. In this
case, from Eqgs. (147) one obtains

o1 — 0y =A(J} — l)+B<1 —}iz) —0y, o =A(5 - 1)+B<1—%> (156)

4 4

For 4, = 1 we obtain g, = 0 as expected. Three curves corresponding to the same three models as before,
with 4 =1, B =0 (neo-Hookean), 4 = B = 0.5 (balanced Mooney-Rivlin) and 4 =0, B =1 are repre-
sented in Fig. 6a. In the figure it can be seen that in the compression regime the neo-Hookean model with
B = 0 exhibits stresses that tend to a constant value equal to —4 for 4; — 0. This is a physically ques-
tionable behavior contradicting the existing data, which clearly follow the tendency shown by the other two
curves (Ogden, 1984). Note that, in this case, no compensation may be expected from consideration of
nominal stresses, since the specimen areas decrease to zero causing actually vanishing nominal stresses for
volume tending to zero.

The diagram on the right-hand side of Fig. 6 corresponds to three curves o; — g, vs. A;, obtained with
fixed 4, values of 1, 2, and 3, for the balanced model with 4 = B = 0.5. As seen in the figure, this implies
simply a translation of the curve downwards, by the amount of o,, which from expression above turns out
to be by 0, 15/8, and 40/9, respectively. This property follows from the sum-type separation of the terms
involving the various principal stretches in the energy function. This so-called Valanis—Landel hypothesis
(Valanis and Landel, 1967) is known to hold very approximately for rubber-type materials up to stretches
of about 10 (Ogden, 1984).

8.5. Model based on Ay, Ly with —1 <v<0.25. Peculiarities and discussion

From the general formulation of Section 8.1, we know that microplane energy functions involving tan yy
also generate shear stiffness and, therefore, in the general case, in the small-strain limit they should collapse
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into the traditional “N-T"" or M1° microplane models in which Poisson ratio can take values between —1
and 0.25 (Bazant and Gambarova, 1984; Carol and Bazant, 1997). Since Ay = An tanyy, it would seem
possible to find an energy function of Ay and Ay that, unlike the one of the previous section, should also
lead to a non-zero shear stiffness term and therefore non-fixed Poisson ratio.

To investigate this possibility, we consider the microplane energy function

A
IRt

4-B, _/12 54—B

Yolin, An] = 5 M ¢

(157)
in which the term in 43, from the previous formulation has been omitted, and the coefficients readjusted so
that the microplane energy function vanishes for the undeformed state. By substituting (157) into integral
formula (1) and applying the expressions derived in Appendix C for the integrals over the hemisphere, one
obtains the macroscopic free energy

A B A-B 54-B
p¥ =5 trC—l——trC +——-=

(158)

which again corresponds to a compressible formulation of the Mooney-Rivlin type and also vanishes in the
undeformed state (C =1, J = 1).

The macroscopic sPK stress tensor may be simply obtained by partial derivative of this macroscopic
potential with respect to the GL strain E, leading to

= AI—AJ—BC‘ — BC? (159)

which vanishes in the undeformed state. Macroscopic Cauchy stresses may be evaluated by push-forward of
the previous expression and scaling by 1/J, which leads to

j(Ab—ABI—Bb ) (160)

Note that by setting B = 0, all these expressions collapse into those of the previous simpler model of Section
6.4 based on Ay only.

For the small-strain reduction, it is better first to rewrite the microplane energy function in terms of Ay
and tan yy. After replacing Ay by Jn cosyy according to (44), we get

Polin, tan py] = §)~§ 4= Bxlj +5 2(1 4 tan®yy) — 5A6_ B (161)
which leads to the microplane stresses
In=Ain— BIJ (1 +tan’yy) — (4 — B)AY', It = Bl tanyy (162)
From the first of these equations, the normal small-strain variables and modulus may be identified as
e~ An—1, on= 2y, EN:% =54 -8B (163)
OAN | 1m0

To keep En positive, the parameters are restricted by B < 54. In the same way, the small-strain tangential
variables and parameters may be identified as

02t
Otanyy

—B (164)

er ~tanyy, or~2r, Er=

An=1,yn=0
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To avoid negative Et, parameter B must be non-negative. The derived values of Ey and Er can be intro-
duced in the general formula (24) derived in Section 3.2, with all the remaining microplane moduli equal to
zero, to get the macroscopic elastic moduli

2 3 B

which can be further substituted in the expressions for the elastic modulus and Poisson’s ratio
K 2E 3E 104 + B 3K -2 Ex—F 54 — 2B
9KG E N+ TZ(SA—B) + G Ex T _ (166)

T3K+ G NaEy+ Er 204—3B" ' T 6K+2G 4Ex+Er 204 —3B

Positiveness of E is guaranteed if En, Er > 0 (that is, if B >0 and 4 > B/5). On the other hand, the
Poisson’s ratio can take any value between —1 (when Et >> Ey, or 4 — B/5) and 0.25 (when Er < Ey, or
B < A). The impossibility to obtain Poisson’s ratios larger than 0.25 is the same limitation as that found for
the small-strain “N-T”” or M1° microplane model (Bazant, 1984). Previous equations can be recombined to
express constants A, B in terms of the desired macroscopic elastic parameters G, v, taking into account the
above mentioned limitations:

2 (2-3v) 1 -4y

A_—4 =
5(01-=2)v " 1—2v

26 (167)

Up to this point, the initial purpose of obtaining a Mooney-Rivlin microplane formulation based on Ay
and Ay which would collapse into N-T small strain microplane models with non-fixed Poisson ratio seems
accomplished. However, the model obtained exhibits some peculiarities. First, we examine the microplane
stresses Xy and Xy, obtained according to (123):

In=AUN =) + B, I = —BAY (168)

If introduced in (124), these expressions lead again to the right sPK stress tensor (159). However, one
immediately notices that none of these microplane stresses vanish for the undeformed state (as they did for
the previous model), but they take the opposite values B and —B, respectively. If these values, together with
initial values of the stretches equal to 1 are replaced into the first two terms of the Lagrangian integral
expression of Cauchy stresses (129), we can group terms into common factor to (n ® n — n ® n), which
reproduces the structure of a shear term even if 2t itself is not considered. This can help understand how
the model with only normal stretches can reproduce shear stiffness. However, it can also be seen that this is
achieved at the expense of a ‘trick’ involving somewhat unphysical behavior on the microplanes.

Same as for the first model based on Ay only (Section 5), when integrated over the hemisphere, the non-
vanishing microplane stresses compensate each other with the result that macroscopic sPK and Cauchy
stress tensors, (159) and (160), indeed turn out to be zero.

Note that an entirely different version of ““irregular’” Mooney-Rivlin microplane model with initial shear
stiffness could have been obtained if, from the “regular” energy function from Section 8.2, the term in /113\1
would have been omitted instead of the term /TI}} (the formulation with both terms omitted is a particular
case already included above if 4 = B). But surely it would suffer by similar anomalies as observed in the
present formulation.

The framework developed in Section 8.1, involving microplane strains Ay, Ay and tan YN, certainly does
not preclude the possibility of a model which collapses into small-strain “N-T> (or M1°) microplane
model. However, the results in previous paragraphs seem to suggest that to achieve that result one would
need to add to the energy function some terms that involve tan yy directly, i.e. independently and separately
from terms with Ay and Ay. Such models would exhibit additional challenges since the closed-form solu-
tions currently available for the integrals over the hemisphere of microplane kinematic variables all involve
simple power functions of Ay or Ay exclusively (see Appendix C). Strictly speaking, this should not prevent
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to formulate such models, since the availability of closed-form equivalence to a macroscopic model is only a
convenient feature for verification, not a requirement. But certainly it may make the development more
cumbersome and trial-and-error based. In any case, any models collapsing into the small strain “N-T”
microplane model will still exhibit a Poisson ratio restricted to the range —1 < v <0.25. The only way to
overcome this limitation necessarily involves considering separate volumetric and distortional microplane
strains (rather than simply “normal” ones), as it was done in Section 7 for the neo-Hookean formulation,
and is done in the following Section 9.

9. Formulation based on J, ip, 4p and tanyy: compressible Mooney-Rivlin material with unconstrained v

In analogy to the extension of Section 6 developed in Section 7, we will now introduce the volumetric
strain J (or, equivalently, 4; = J!/?), to account for pressure sensitivity of the bulk of the material inde-
pendently of the stretch of the embedded fibers and “platelets”. A straightforward extension would lead to
a formulation with /;, Ax, A and, following the same arguments as in the previous section, also with tan yy,.
However, it is more convenient to exploit the relations Ay = Ap4; and Ay = Ap4; and work with the de-
viatoric stretches instead of the normal ones. This type of extension leads to cleaner uncoupled expressions,
which for small strain collapse into the existing “V-D-T”’ or M2 microplane model (Bazant and Prat,
1988a; Carol and Bazant, 1997).

9.1. General stress evaluation formulae

The microplane free energy takes the general form
q/g = T;)[/l],/l]),i]),‘[an’yN,é] (169)

Introducing this energy function into Eq. (30), we obtain

S <ZJ%+ZD%+2D%+zTatanVN>dQ (170)

"2 J,\ 7T OE OE OE 3E

where the individual microplane stress components

P v, P P
0o Wo 5 _Wo o W (171)

Z:— = — = —
YToh 0 TP T TP akp 7T d(tanyy)

are the thermodynamic forces conjugate to the strain components. Substituting into (170) partial deriva-
tives of /5, Ap and Ap with respect to E from Appendix A, we get the final Lagrangian-type formula for the
sPK stress tensor,

3 AJZJ -1 1 ;LD -1 = 273 —1 —1 /TD —1
=— [ [22c '+ 5| —NaN-2 + 3|4 ‘NeN.Cc'-22
o Q( oC D(ﬁh ON-FC b| 4ZpC NeN.C' -2

ZT 1 22 ~—1 -1
=NeN-,C -N®N-C dQ 172
tan yy ( e ® N © (172)

Contravariant push-forward of this equation and further simplifications, including the assumption that
2y is the same for all microplanes (i.e. it only depends on 4y and not on Ap, Ap or tan yy), lead to the Cauchy
stress tensor
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2] 3 | _ _ B 1 ZT B B
=—=I4+-— Zpi —= z —= _ — dQ
’ /ﬁ Jr27'&]/9( ° D(n@n 3)Jr DAD<n®n 3>+cosyNsinyN (n®n n®n)>
(173)

Introduction of the unit vectors i and t given by (127) and illustrated in Fig. 3, followed by substitution of
n — n according to (128), lead to

X3 | AN |  rofe = o= -
o-i—il—i—ﬁ/[Z(ZD)uD(n@n—g)+ZD/ID<n®n—§>+COSVN (n®t+t®n))d9 (174)

Split of the integral and substitution of dQ for each of them in terms of the three different deformed solid
angles do, d@ and do (Appendix B) leads to the modified formula

.3 [ s I 3 o (. I\, _
e —— Jdo+— | = —2)d
c i? —1—27[ T n®n 3 w+2ﬂ/QJ}?D n®@n 3 )

3 Zr8cosiyn/2] /= = = -\ .o
b M(ﬁ@t—i—t@ﬁ)dc‘o (175)
2n Jo  JJycosyy

The last step is the collection of terms for the same deformed solid angle, which for each integral will
come from different initial orientations. The resulting, fully Eulerian formula is

3 I 3 gy
= VI —_— —_— — — 1
=0 +27‘c/gad<n®n 3>dw+2n/9 2(n®t+t®n)da) (176)
where
z I Zp 1625 cos®[yg/2
o=, o=ofo 2, 16%cos /] (177)
2 J J5 JJN cOs P

9.2. Hyperelastic microplane model based on 2;, \p and Ap and equivalent compressible Mooney-Rivlin model

Consider the following microplane free-energy function, with power terms in Ap, Ap analogous to the
“N” terms in (133):

a2 -3 72 73
. iy s 2R s\ 1,

The volumetric function g[J] is assumed to satisfy the same conditions as stated in (110). Note that the
potential (178) vanishes in the undeformed state (Ip = Ap =J = 1).
The material microplane stresses are obtained by taking partial derivatives of the potential:

0P
=%

oY
= 8- /«fg/[/ﬁ]’ 2p

_ _ = o a TQ o -3
0/ !

z AUp —25), Zp=—==B( —15) (179)
04p
These microplane stresses all vanish in the undeformed state (ip = Ap =J = 1). The evolution of Xp with
Jp is the same already shown in Fig. 2 for the previous model based on Ay only, and the evolution of Xy
with Ay exhibits a similar intuitive shape, as also represented in Fig. 4 (Section 8.2).
Cauchy microplane stresses are obtained applying (177), yielding

ov=¢V], oa=50p-D+7(1-45), 0 =0 (180)
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where Ap is the distortional thickening of the plane with initial normal N, i.e. the plane whose normal after
deformation became n. Note that, similarly to the formulation of Section 8.2, tangential Cauchy stresses
turn out to be zero in spite of the indirect involvement of the shear angle through Ap = Jp cos . This result
is in accordance with the small strain reduction in the next section.

The macroscopic hyperelastic model equivalent to this microplane formulation is obtained by inserting
the microplane potential (178) into integral formula (1) and applying the expressions derived in Appendix C

for the integrals over the hemisphere of 45, A5’, 45" and A},. This leads to the macroscopic free energy
A B, .,
pO'PZE(trCD—3)+E(trCD -3)+glV] (181)

This potential corresponds to a compressible formulation of the Mooney-Rivlin type expressed in terms
of the distortional left Cauchy—Green tensor Cp =.J 23C (Ogden, 1984). Note also that this potential
vanishes in the undeformed state (Cp =1, J = 1).

The macroscopic sPK stress tensor can be obtained either by partial derivative of the potential with
respect to the GL strain tensor E, or by integrating the material microplane stresses over the microplanes in
the original configuration via Eq. (172). Either way, the result is

tr C trC™!
T =JgJ)C " + 477 (1 - rTcl> _ B (02 - rTc1> (182)

which may also be expressed in terms of Cp as

-
) :J1/3g/[J]C]_)l —|—AJ72/3 (I_%C;;) _BJ72/3 (C]—)Z _trgD C]_)l> (183)

Contravariant push-forward divided by J and substitution of trC = trb leads to the macroscopic
Cauchy stresses

—1
o=gI+4J7" (b—?l) —BJ'S (bl —%I) (184)

which may also be expressed in terms of the distortional part of the left Cauchy—Green tensor by = J~*/3b
and of its inverse:

- A trbp B[ , trbgy
o-—g[J]I—i-J(bD 31) J(bD 1 (185)

In this expression it turns out that terms between parentheses correspond to the deviatoric part (in the
traditional additive sense) of bp and bl’)l. For this reason, the model exhibits a clear separation between the
volumetric part of the Cauchy stresses, which depends on the scalar function g[J], and its deviatoric part,
which depends on the deviatoric parts of by and byy'. Due to this fact, the previous expression may also be
written in the more compact form

A
J

B
b = (b5 (156)

o =g+ 7

All these expressions may be compared to those of the “J-D’ model of Section 7, to which the model
collapses if B = 0. Basically, in that model the expressions were linear in Cp and bp, while in this case new
terms proportional to Cy' and by' are added. By application of the Cayley-Hamilton theorem, these
expressions can be converted to other sequences of three consecutive powers of the same tensors.
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9.3. Small-strain reduction and elastic constants

In the small-strain limit, the model collapses into the elastic part of the small-strain microplane model
M2 with microplane stresses oy = Evey, op = Epép and or = Eter (Bazant and Prat, 1988a), also known as
the “V-D-T” or M2 formulation. To achieve that result, first the microplane potential must be rephrased
in terms of /;, Ap and tan yy, by substituting Ap = Ap cos yy into (178). In this way one obtains

Y[l ip, Ap) = A4 (% + %53 - 2) + B(%—)2 cos 2 yy + % cos” yy — %) + %g[J] (187)
Partial derivatives lead to the material microplane stresses

2y = Xg 175 (188)

Sp =A(Jp — ig') + B(—25 cos 2 py + A5 cos’ yy) (189)

St = Btanyy (A — A3, cos’ jy tan py) (190)

Note that all these microplane stresses vanish in the undeformed state (4; = ip = 1, y5 = 0).
From previous equations and some physical considerations, it follows that in the small strain regime

0x
8V%/1J—1, GVQZJ, EV: it :3g//[1] (191)
Oy |,
)
SD%;LD—I, O'D%ZD7 Ep = a—D :S(A +B) (192)
0/p p=1,yn=0
oXr
8T%tany R UTFUZ'D ET: —— =0 (193)
b o(tan yy) Ip=1,75=0

where, same as in Section 8.3, we obtain Er = 0. If the remaining microplane moduli have to be positive,
this implies constraints g”[1] > 0 and 4 + B > 0. The expressions for Ey and Ep can be introduced into (24),
with all the remaining microplane moduli (in this case £y and Et) set to zero, to obtain the macroscopic
linear elastic bulk and shear moduli

E
3K = Ey = 3¢"[1], G:?D:A—f—B (194)

The elastic modulus and Poisson ratio are given by the standard expressions

_ 9KG ) A+B L _3K=2G _3¢'(l] - 2(4 +B)
“3Kk+6 U3y A+B T 6K+2G  6g'[1] +2(4+B)

(195)

Note that all these expressions collapse into their counterparts in Section 7 if B = 0. Same as in that case,
the elastic modulus E is guaranteed to be positive if 4, B and g”[1] satisfy restrictions stated above, and the
Poisson coefficient can take any value between —1 (when g”[1] < 4 + B) and 0.5 (when g"[1] > 4 + B).
There seem to be no restrictions to the sign of 4 or B as long as their sum remains positive as stated above.
Previous equations may be inverted to obtain 4 + B and g"[1] from £ and v:

E E
3g" 1] =3K =

A+B=G=
TE=G=50 Ty

(196)
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9.4. Application results: uniaxial loading

The macroscopic behavior of the Mooney-Rivlin microplane formulation with unconstrained Poisson
ratio just presented, is illustrated in this section with some results under uniaxial loading. But first, a
particular form needs to be specified for the volumetric energy function g[J]. The expression adopted for
this example is

g =5 (J +}—2) (197)

which satisfies the requirements g[1] = 0 and g’[1] = 0, and for which K is identified as the bulk modulus
because g’[1] = K. Note that this expression is similar to the J-dependent terms of the macroscopic free-
energy function of the Mooney-Rivlin model with fixed Poisson ratio developed in Section 8.2, see Eq.
(136). However, this does not mean that the response of both models under volumetric loading is the same,
since in the previous case the other terms of the free energy including tr C and tr C~' would also be involved
in the volumetric response, while here the similar terms involve Cp and will not participate.

With the function g[J/] above, volumetric Cauchy and Kirchhoff stresses turn out to be

JV:g’[J]:§<1—%>, TV:JUV:Jg/[J]zg(J—}> (198)
For large compression, both g, and 7, tend to —oo; under large extension o, tends asymptotically to a limit
value of K /2, while 7, tends to a linearly increasing response with slope K /2. All this is qualitatively similar
to the example model of Section 8.2 with fixed Poisson ratio, for the case 4 =0, B =1 (Fig. 5b).

The previous choice of g[J] was partially motivated by the feature that it can be inverted in closed form
to obtain the useful expression

J=2 (3)2+1 (199)
K K
Uniaxial loading is characterized by the total and deviatoric stress components
2
0y =03=0, ovz%, S| = 0y —(TV:%, S2=S3202—6v=—% (200)
and by the strain components
da=2s, J=uik =JP =102 (201)

which lead to the distortional stretches p,, u,, 15 (square roots of eigenvalues of bp) given by

/11 2/3,-2/3 ;“2
_:,{1//12/7 ﬂzzu3:T:

=5 i (202)
J

J

which are subjected to the constraint

= (203)

From Eq. (185), one can write the deviatoric stress component of the Kirchhoff stress tensor, which on
the right-hand side will only involve the deviatoric parts of by and b;', and because of coaxiality will lead to

2 2 -2 -2
+2 _ +2
s, :AQ‘?‘%) —B(uf—%) (204)

By simplifying the right-hand side and substituting the constraint (203) and s; according to (200c), one gets
the explicit expression of 7, = Jog; in terms of y,
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Fig. 7. Mooney-Rivlin microplane model with unrestricted v under uniaxial loading: (a) uniaxial stress and (b) lateral stretch, in terms
of axial stretch, for various values of v.

o =AG - t) = B — ) (205)

This equation may be used as a part of a closed-form parametric solution in terms of y,. The solution is
completed with the inverted volumetric equation (199) which, together with (200b), leads to

T1 T1 2
J=rety/(5p) +1 206
3K + 3K * (206)
Once 7, and J are known for a given value of y,, it is immediate to calculate the corresponding values of
o= = =gy (207)

The pairs a1, 4; and 4, 4; obtained with previous relations for each value of u, have been plotted as curves
in the left and right diagrams of Fig. 7. Different curves in each diagram correspond to the same initial
elastic modulus £ = 5/2 but different values of initial Poisson ratio v ranging between —1 and 0.5. This leads
to different values of constants g”’[1] = K and 4 + B = G (196). For this example 4, B have been assumed to
be equal, i.e., 4 = B = G/2.

The figure shows that, unlike in small-strain elasticity, in this case the choice of initial Poisson ratio not
only changes the lateral strain development, but also may affect the uniaxial curve itself.

10. Concluding remarks

A consistent extension of microplane theory to large strain has been presented, based on the thermo-
dynamic approach developed in recent years by the authors. It has been reassuring to verify, albeit in a
simplified way, that the same ideas of microplane model had already been used in rubber elasticity many
years ago. A variety of possible microplane strain variables have been described, and their meaning ana-
lyzed. The analysis has dealt with four microplane formulations which progressively incorporate additional
microplane variables and become more complex; see Table 1. For each of them, specific hyperelastic
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Table 1

Overview of general large-strain microplane formulations proposed in the paper
Section Formulation Microplane strains sPK stress Cauchy (L) Cauchy (E)
5.1 N AN 47 49 52
7.1 JD 235D 103, 105 107 108
8.1 NG ANy ANG N 124 126, 129 130, 131
9.1 IDG A1y 2Dy ADy PN 172 173, 174 175, 176

Table 2

Overview of specific hyperelastic microplane models developed in the paper
Section Underlying Microplane Macroscopic Compressible  Poisson’s ratio  Related to

formulation potential potential

5.3 N 64 74 - 0.5 Gaussian network
6.1 N 80 N/A - 0.5 Treloar model (1954)
6.2 N 82 N/A - 0.5 Thomas model (1955)
6.2 N 85 88 - 0.5 Neo-Hookean material
6.4 N 85 97 + 0.25 Neo-Hookean material
7.2 JD 111 114 + [—1,0.5] Neo-Hookean material
8.2 NG 133, 139 136 + 0.25 Mooney-Rivlin material
8.5 NG 157 158 + [-1,0.25] Mooney-Rivlin material
9.2 IDG 178, 187 181 + [-1,0.5] Mooney-Rivlin (deviatoric)

models, most of which correspond to specific forms of the well-known macroscopic neo-Hookean and
Mooney-Rivlin materials, have been developed (Table 2). At the same time, for small strains the models
collapse into the well-known small-strain microplane formulations of the N, V-D, N-T and V-D-T types,
also called M1, M1° and M2.

Table 1 summarizes the general formulations, labeled as N, JD, NG and JDG, depending on the
microplane strains listed in the third column of the table, which are used as arguments of the microplane
free-energy potential. The numbers in the fourth to sixth column refer to the equations in the paper that
give the stress evaluation formula for the sPK stress and for the Cauchy stress in either Lagrangian or
Eulerian setting (integration over spatial directions performed either in the initial or in the deformed
configuration).

Table 2 gives an overview of hyperelastic microplane models constructed as specific examples within the
framework provided by the aforementioned general formulations. Each model is characterized by an ex-
pression for the microplane free-energy potential, given by the equation referred to in the third column of
Table 2. For most of the models, this potential can be integrated in a closed form over the spatial directions,
and the resulting expression for macroscopic free energy is referred to in the fourth column. Symbol “N/A”
means that the closed-form expression is not available. The fifth column specifies whether the material is
compressible, and the sixth column gives the value or range for Poisson’s ratio of the model in the small-
strain limit. The hyperelastic theory related to the respective microplane model is mentioned in the last
column.

Overall, this paper intends to provide evidence that microplane formulations can also be used for rig-
orous constitutive modeling at large strain and that, as the first step, standard finite elasticity models can be
recovered. But obviously, this exercise is only for the sake of verification. Once the framework has been
established, a wide range of new possibilities emerge and should be explored in the future.

The real advantage of microplane-based constitutive modeling is that it provides the possibility of a large
variety of formulations that do not have explicit equivalents in the traditional macroscopic (tensorial)
context, and that may be much richer and more powerful. In small strain this has been shown extensively
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for materials undergoing damage such as concrete and, although not so extensively, also for metal plas-
ticity. For instance, the simplest microplane model of the von Mises type, exhibiting perfectly plastic be-
havior on the microplanes, provides, by effect of the progressive yielding of the microplanes of different
orientations, a spontaneous hardening response at the macroscopic level, with realistic unloading-reloading
representation of the Bauschinger effect (Carol and Bazant, 1997). These and other features, which are very
difficult or impossible to achieve with tensor-based models, may be naturally obtained with microplane
models, as for instance the vertex or “loading to the side’” non-linear response observed in concrete (Caner
et al., 2002).

Applying these ideas within the new framework of large strain developed in this paper is a promising
lead for a new generation of constitutive models with enhanced features and conceptual simplicity.
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Appendix A. Derivatives of microplane strain measures with respect to Green’s Lagrangian strain tensor

In this appendix we differentiate the microplane strain measures /y, Ax, An, Ap, Ap and tan yy, defined in
Section 4.2, with respect to the GL strain tensor E. It is useful to recall the relation C =1+ 2E and to
realize that 9f /OE = 20/ /0C for any scalar or tensorial function f.

Differentiation of the Jacobian J = detF = +/detC is facilitated by the well-known formula
O(det A)/0A = (det A)A™", valid for any regular matrix A. Replacing A by the Green’s Lagrangian strain C,
we get

d(det C)
aC

because C is symmetric. Now we can express

= (detC)C™! (A1)

o _ W ,oVdetC_ 2 ddet€) 1, (A2)
3E  “aC aC  2v/detC_oC 7

and

0y a(Jl/S) 1 —-2/3 oJ 1 131 1 -1
—_— g _— = - = — A
OE OE 37 T3 C 34C (A-3)

Definition (33) of Ay can be rewritten as

IN=VN-C-N=,/(NeN):C=VAN:C (A.4)
and its differentiation leads to

%:26\/W:C: 2 a(JV:C):AiM (AS)

oE aC 2/ C oC /N

To derive a similar formula for Ay = (A" : C*l)fl/ ?, we need to express 9C~' /0C. This is easier to do in the
indicial notation. Let us start from the identity C™' - C = I, rewritten as
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(€™ Cu = du (A.6)
Differentiating with respect to C,,, (assumed symmetric), we obtain

o(Cc), 1

A i Gy (€7 (o + O1s0ia) = 0 (A7)

This identity must hold for an arbitrary combination of i, I, m, and n. Multiplying both sides by (C') I
leads to ‘

a(ﬁcc:mn)ik O % (€€, +(€,(€),) =0 (A8)
from which

o(C)..

(acmn)u = _% ((Cil)im(cil)jn + (Cil)m(cil)jm) (A.9)

Now we can evaluate

_ —1y-1/2

om (e | L oC L ac!

=2 =2 - = . R = — : A.l

oE oC ( 2) (rc) oC 2 oC (A.10)
Switching to indicial notation we get

Un s 0C), .

E. —lirNiN/Tm] = ANA(C™),,(C7H,N; (A.11)
and the result can be written as

%LS:RN~C” ®@C' N=4C"'" NeN.C'=3C"- ¥ .C" (A.12)
Note that we have exploited the symmetry of C.

Once the basic relations (A.3), (A.5), and (A.12) have been established, it is easy to express

0 0 [N\ ANANh-ninCt o1 1.

b~ (N = N —=pC A.13

OE ~ OE ( Iy ) i i3 (A13)

oo 0 () ARCUaCUy-ininct o, IR D

— === =154 N - = A.14

OE aE</1J> )2 A€ AT C =3 ApC (A-14)
and

dtanyy) 0 [ [ (2 " 04 o7

VN N _ — _ | IN _ y) 7-2Y4AN 2 7-3 VAN

E  OE |\ M =3 ( 2 1) (2 VAN TR TN R
1 72 22 1 -1
= — N A.l
e (R - 2c c) (A.15)

Other useful expressions that are needed for the development of various hyperelastic models are

A(trC) d(1:C)
e (A.16)
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and

orc) _aa:ch) _ - aCc™h

oE oE - ocC

= -2C (A.17)

Appendix B. Transformations of solid angle between initial and deformed configurations

In the initial configuration, each microplane is characterized by the unit normal N. In the deformed
configuration, we define the unit vector n = F - N/|F - N| = J'F - N, which gives the direction of the fiber
initially perpendicular to the microplane, and the unit vector i = F ' - N/|F~*-N| = AxF ' - N, which is
normal to the deformed microplane. Consider the set of all microplanes with initial normals in an infini-
tesimal solid angle dQ2. After deformation, the vectors n associated with all these microplanes fill a solid
angle dw, and vectors n fill a solid angle d®. Transformation rules for these solid angle differentials can be
derived from the transformation rule for surfaces.

The intersection of the solid angle d@ with the unit hemisphere is an infinitesimal surface characterized
by the vector dA = Nd4 where the unit vector N defines the normal to that surface and d4 = dQ is its area;
see Fig. 8a. The deformation process transforms dA into a surface characterized by a vector da, as shown in
Fig. 8b. The surface transformation is described by the Nanson formula,

da=JF"'-dA=JF"'-Nd4 =JJi'nd4 (B.1)

To evaluate the corresponding solid angle dw, the deformed surface must be projected onto the plane
perpendicular to the vector F - N; this is achieved by contracting da with n. According to Fig. 8c, we can
then write

da-F-N
F-NPdo=da-n=—— B.2
| |"do =da-n FN (B.2)

from which
.F- Ft. -F-

o= FN_(F NU)-FN_ 50 (B.3)

|F - N| |F - N|
The expression for d@ can be derived in an analogous way, with F replaced by F = F~'. The result is
do =J7 '3, de (B.4)

(@) dA=N dA

Fig. 8. Unit sphere in initial configuration and its ellipsoidal image in deformed configuration.
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Both of previous expressions may be alternatively expressed in terms of the distortional stretches
do =25'dQ, do=7dQ (B.5)

The expression of dw may be obtained by first identifying the fictitious deformation gradient tensor
which transforms N into n + n, which is

n-+n

)1 F-N+InF'-N=Fy-N, FN—; F+ InF ! (B.6)
‘N

Note that Fy depends on the microplane direction N, reason for which the symbol includes the subindex.
From the fictitious deformation gradient one can also calculate a fictitious fiber stretch

In = N (B F) - N = /N (€2 + 2C" +2cospl) - N = /21 + cos )
= 2cos[yn/2] (B.7)

and the fictitious Jacobian

= = 1 1
JN = det FN =det | —F + ANF = det

)N )N
in which the subindex N has been maintained to indicate dependency on microplane direction. Finally, the
desired relation is obtained by replacing F, Ay and J in (B.3) by their double bar counterparts, which leads
to

— U+ NU" ] (B.8)

_
di = o3 77 dQ (B.9)

Appendix C. Closed-form expressions for integrals over the unit hemisphere
Useful expressions can be derived from the well-known formula
3
I=— [ N®NdQ C.1
5 [ Ne )

Multiplying both sides from the left by F and from the right by F', we obtain

F-1. Ft—b——/F N® (F- z—/ANn®ndQ—2w/}Nn®ndw (C2)

where the relation between initial and deformed solid angle (B.3) has been used for the last equality. Tensor
b has the same principal values /If, I =1,2,3, as the right Cauchy-Green deformation tensor C. Since
(n®n) : I=n-n=1, the trace of (C.2) is

3 3
trb:trC:/ﬁ+)é+)é:11:E/QAQNdQ:%/QA;dw (C.3)
Therefore the average value of the squared microplane stretch over the unit hemisphere in initial configu-

ration is equal to the average value of the squared principal stretches.
Repeating the procedure with F replaced by F~', we obtain an integral expression for the Finger tensor

b'=F"' F' :%/F’t-N@)(F"-N)dQ:%//1‘2‘® dQ——//l—S-@ndw (C.4)
Q Q
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and its trace

L 3 [- 3J [ -
trh =t C ' =22+ i =2 = /ﬂdg = / Il d@ C.5
1 2 3 .]2 2 0 N o1 o N ( )

Formulae analogous to (C.1) must hold in the deformed configuration, with dQ replaced by dw and N
replaced by n, or with dQ replaced by d@ and N replaced by n. The integration domain is still the unit
hemisphere, Q. Using transformation rules (B.3) and (B.4) derived in Appendix B, we can construct integral
expressions for the right Cauchy—Green tensor,

3 3 - 3
F'-1.F=F'. nido ) -F=-—"— SN NdQ:—/7N Nd@ 6
C= (zn/n@)n w> 2TEJ/Q/1N ® o Q/IN ® Ndo (C.6)

and its inverse,

Cl:F1-I~Ft:F1-(i/n®nda)>~Ft=3—J/iN5N®NdQ
21 Jo 2n Jo

3

2
=5 | AWN@Ndo (C.7)

Double contraction of (C.6) and (C.7) with the unit tensor I provides alternative expressions for the in-
variants

3 - 3 o
and
trC ' =trb ' =47+ A0+ A0 = 12 3 SdQ——/ I do (C.9)
21

~ All previous relations may be rephrased in terms of /p and Jp by only replacing iy =J'3Jp and
Jn = J'3)p, and extracting the J terms out of the integral.
Equations of the solid angle transformations (B.3) and (B.4), together with the identities

2n:/QdQ:/de:/Qch (C.10)

lead to integral expressions of the Jacobian and its inverse
J—l/Z3dQ—l/)3dw 11 ; 'dQ = /1 do (C.11)
Tom SN T o J,NTT T T o N T ‘

Since J = }.i, relations (C.11) imply that the average value of Ef) as well as of 153 over all microplanes is 1.
Recall that Ap = In/4; and Ap = An//4; are the microplane stretch and microplane thickening corre-
sponding to the distortional part of the deformation gradient. Conditions

1 73 1 30 1 )3 _ 1 73 45 —
—n/Q/IDdQ—%/QiD dQ_zn/QAde_zn/QaD do =1 (C.12)

are large-strain generalizations of condition fQ epdQ = 0 valid for the small-strain microplane theory.
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Appendix D. Expansions used in the small-strain limit

Reduction of the general theory to the small-strain case is based on the assumption that the components
of the displacement gradient are of the order of € where € < 1 is a small parameter. It is useful to write the
deformation gradient in the form

F=I+¢+o (D.1)

where ¢ is a symmetric tensor describing the small strain and o is a skew-symmetric tensor describing the
small rotation. The following approximations can then be derived:

C=F F=I+e¢+&+0o+0 +0[]=1+2+0[] (D.2)
F'l=(I+e¢+0) ' =1-¢—o+0[ (D.3)
C'=F'" F'=1-2+0[] (D.4)
IN=VN-C-N=/1+2N-&-N+O[]=1+N-&-N+O[}] = | + &y + O[] (D.5)

IN=(N-C' N =(1-2N-e-N4+O[) " =1+N-e-N+ O[] =1 +ex+ 0[] (D.6)

JP=detC=7222=(1+e)(14&)(1+e) +0[E] =142 + &+ &) + O[] (D.7)
J=VI2=\/T42(e1 + & +e) + O[] = 1 +& + & + &5 + O[¢’] (D.8)
=JV =1 +4e+e+e+0[)” =1+ +e+e) + O] (D.9)
n=/FN=(1-ex+O[)(N+e-N+o-N)=N+e-N+o-N-eN+ O[] (D.10)
n=NF'""N=(1+ex)(N—&-N+o N)+ 0[] =N-2&-N+o-N+exN+ O[] (D.11)
n@n=AN+N-e+e N —N -0+t N—2enN + O[] (D.12)
M= N—N-t—e- N —N -0+ N+2exN + O[] (D.13)
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